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Eig pvipyv

O Kabnyntig Mipov K. Ipappanikérovies yevwibnke om Ikayxpa, Ceopyiog To 1935 kot HAbe
otnv EXAGSo to 1966. Anéknos 1o Ttugio tov Mofnuatikdv to 1961 and 1o IHavemotiuo tov
Kalaxotav, 10 Mdoxtopikd Aimdopa to 1975 ko 1o titho tov Yonmt to 1981 and 1o Tuiuo
Mobnpotikdv tov IMovemotnpiov Iwavvivav kobfdg xor to tunmikd Simhope tov Emitipov
Addxropog To 1995 and to [lavemotiuio Podoe, Boviyapiog.

Yrnpémoe oto Tpiqpo Mobnpaticdv tov Havemomuiov loavvivov exi pia tprakovtoetio, 1972-
2002, og Bonldég 1972-75, wg Empueintmig 1975-81, og Emikouvpog Ka@nymtig 1981-85, g
Avominpotig Kobnynmg 1985-86, kui wg Kabnynrig 1986-2002, evd evdidpeca to 1978-79
mopEpeive g Visiting Researcher oto Mississippi State University, to 1984-85 wg Visiting Assistant
Professor oto University of Rhode Island kot 1o 1991-92 xar 1995-96 wg Visiting Professor oto
Technical University of Rousse. Emiong vanpémoe og Avanhnpotic Ipdedpog tov Tufpatog
Mobnpatikav m etia 1989-91 kan wg ArevBuverig tov Topéo Mabnpatikig Avéivong v Tpietia
1992-95.

"Ocov agopd otig EpgLYNTIKEG TOV dpactnpidTnTEs, OV dpKesay péypt v TeElevtoin Muépa TNg
entyeog Cong tov, o Mopav K. Ipoppatikémovioc, napryaye molld svdiagépovia GOpmEPAGHOTO
ot Qewpio Tardvioong tov Zovidov ka Zvuvoptnoiakdv Awegopikdv EEshoemv. Exndvnoe pdvog
M oe ocvvepyooio pe dAhovg epevvtés mepiocotepsg and 75 epyacicg mov &yovv Snpocievlei og
Voot 61e0v meprodikd kou o1 omoieg Guyva avapépovial and GALOVS EpELVNTEC OVE TOV KOGHO.

O exhnrdv frav pérog g Zuvtaktikig Emrponiig tov Technical Report to Sidotnuo 1978-2002 wo,
¢ EAGYLOTOG POPOG TIUTG, 0 TOPOG aVTOS PIEPOVETHL OTH UVAKT TOV.

A&éxuote cuvadehpé Lac, arwvia cov n pvijun!
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Grammatikepoulos, obtained very interesting results on the Oscillation Theory of Ordinary and
Functional Differential Equations. He authored and/or co-authored more than 75 papers published in
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He was a member of the Editorial Board of the Technical Report from 1978-2002 and this Volume is
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Abstract

We consider a queueing system with Poisson arrivals and arbitrarily
distributed service times, vacation times, start up and close down times.
The model accepts two types of customers, the ordinary and the retrial
customers and the server takes a single vacation each time he becomes free.
For such a model the stability conditions are investigated and the system
state probabilities are obtained both in a transient and in a steady state
and used to derive some important measures of the system performance.

Keywords: Poisson arrivals, Start up times, close down times, vaca-
tion, retrial queue, general services.

1 Introduction

Queueing models with vacation periods and start up/close down times have
been proved very useful to model telecommunication systems and many other
queueing situations containing "mechanical parts” that need a "preparation”
(start up) before use and a switch off-maintenance period after use (computer
systems, manufacturing systems e.t.c.). Applications of such kind of queueing
models in SVC - based virtual LAN- emulation and in IP over ATM networks
have been described in details in Sakai et al. [1], Niu & Takahashi [2] and in
the references therein.

In all models, described and investigated above, the arriving ”customers ”
are queued up and wait to be served. On the other hand, it is easy to realize
that such kind of real situations accept, in many cases, and a second kind of
”customers” that do not wait in a queue but instead, if they find upon arrival
the server unavailable, they depart from the system and repeat their arrival
later until succeed to be served. As a simple example of such a situation one
can consider an X-ray unit or a tomographic unit, where the machine needs
a special time to start working and to close down where there are no more



patients waiting, while external phone calls of patients that ask for the results
of their examinations or ask for medical advice, arrive and engage the ”server
. Queueing systems with retrial customers are widely used in the literature to
model telephone switching systems, telecommunication systems and computer
networks. For a complete survey on past papers on such kind of models see
Falin & Templeton [3], Kulkarni & Liang [4] and Artalejo [5].

In this paper, the two important features, i.e., the start up/close down fea-
ture and the retrial feature are combined together, for the first time in the liter-
ature. Thus here we study for the first time a queueing model of vacation-start
up/close down nature accepting two types of customers, the ordinary customers
that are queued up and wait for service and the retrial customers. The server
needs a start up time before starts working on customers (different start up for
each type of customers), a close down period upon finishing the job, and when
he is free he departs for a single vacation. Moreover the ordinary customers
have a kind of priority upon retrial customers, in the sense that the arrival of an
ordinary customer interrupts the start up time of the retrial customer (if any),
and the server starts to be prepared to serve the ordinary customer.

The article is organized as follows. A full description of the model and
some, very useful for the analysis, preliminary results are given in section 2 and
3 respectively. The time dependent analysis of the system state probabilities
is performed in section 4, while in section 5 the conditions for statistical equi-
librium are investigated. Finally, the generating functions of the steady state
probabilities are obtained in section 6 and used to obtain, in section 7, some
important measures of the system performance.

2 The Model

Consider a single server queue accepting two types of customers. The P; cus-
tomers (ordinary customers) arrive according to a Poisson distribution para-
meter A; and queued up in an ordinary gueue waiting to be served. The Py
customers (retrial customers) arrive according to a Poisson distribution para-
meter Ag and, if find the server unavailable, they leave the system and join
a retrial box from where they retry independently, after an exponential time
parameter «, to find a position for service.

To start serving the Pjcustomers waiting in the queue or the P, customer
who found a position for service, the server needs a start up period S;, i =
1,2 (different for each type of customers), distributed according to a general
distribution with distribution function (D.F.) 5;(z), probability density function
(p.d.f) si(z) and finite mean value 5;, i = 1,2 respectively. Moreover the
server, upon finishing all tasks in the queue and in the service area (the retrial
box is not necessarily empty at this point), operates a close down period C
arbitrarily distributed with D.F. C(z), p.df. c(z) and finite mean & During
the close down period no retrial customer can access the service facility, while
if a Py customer arrives during C, the server returns to the serving mode and
starts serving P; customers but now with a different start up period S5 with



D.F. S3(z), p.df. s3(z) and finite mean 53. This can be explained by the fact
that after an incomplete close down period it is natural for the server to need a
different start up time to transfer again the system in the serving mode.

When a close down period is successfully completed the server departs for a
single vacation V' which length is arbitrarily distributed with D.F. V(z), p.d.f.
v(z), and finite mean ¥. If, in the end of the vacation, there are P; customers
waiting in the queue the server operates an S period etc., while if the queue is
empty he remains idle waiting for the first customer, from outside or from the
retrial box, to start working again.

It is natural for the ordinary P; customers to have a kind of priority over the
retrial Ps customers. Thus, if a P; customer arrives during the start up time of
a Py customer then this start up period is interrupted and a S; time followed by
a busy period of P} customers and a close down period begins. The interrupted
Py customer does not return to the retrial box but he restarts his start up time
from the beginning when this close down period of P; customers is finished. On
the other hand the arrival of a P} customer cannot interrupt the service time of
a Py customer. In the later case, the service of the Py customer is completed
and in the sequel the server starts working (start up plus busy period) on the
P; customers.

Finally, the service times of both type of customers are arbitrarily distributed
with D.F. B;(z), p.d.f. b;(z) and finite mean value b; for i = 1,2 respectively,
while all random variables defined above are assumed to be independent.

3 Preliminary Results

We agree from here on to denote in general by a*(s) the Laplace Transform
(L.T.) of any function a(t). Let us denote now by B®) the duration of a busy
period of P; customers which starts with ¢ = 1,2,... P; customers, and let
N(B™) be the number of Py customers arrive during 8. Define

g (t)dt = Prft < B® <t +dt, N(BY) =m)].

Then it is known from Langaris & Katsaros [6] that
0ty [ )
=0

where z(s, z2) is the root in z; with the smallest absolute value of the equation
21— b’f(s i )11{1 o Zl) + Ag{l et 22)) =

Let now denote by R the time interval from the beginning of a close down
period until this period be successfully completed and let N () be the number
of Py customers arriving during R. If we define

o o0 .
ri(t)dt =Prt < R<t+dt, N(R)=j], 71*(s,2)= fu e st er(t)zédt,
=0



and denote

(ﬁ) = g~ Mt (Alt)ief,\zt (AQt)m
! m!

Pim 3 0(3,21,22}=3+)\1(1—21)+/\2(1“32},

then it is clear that

i) = poj(t)e(t) + { M Yoi—o por(t)[1 — C(t)]}
{20 X0l pim(®) s3(8)} + I8 ™ g8V (@) # 1 kmmit(8),

(1)
and so finally
c*(a(s, 0, z
T*(S,22)= ( ( 2)) —,
1— M(s,z(s, z3), 22)
with " il Bl
—c*(a(s,0,z
M (s, z1,22) = Aizs5(als, 21, 22) )——m%—2 (2)

a(s, O: Z'z)
Let now @) be the time interval from the beginning of a vacation period until

the epoch at which the server becomes idle, and let N (Q) the number of P,
customers arrive during @). If we define

q; (t)dt == Pl’[t < Q <i+ dta A‘Y(Q) = -7]1 q*(33z2) = j; e—-St Z‘b(t}zgdts
j=0

then
i(t) = pos(B)u(t) + 2, Thoo Pik(B)0(E) * 520 S5 prm(#)s1 (2) 5
ey et e T T 1, () i )

and so
v*(a(s, 0, 22))
1— [v*(a(s, 21,22)) —v*(a(s,0, 22)]s7(a(s, 21,22))r*(s,22)

g (s,22) = (4)

Note here that if we denote

¢ (a(s,0,22))v" (a(s,0,22))
1—-M(s,51,52)—c*(a(s,0,52))[v" (a(s, 21,22))—v" (a(s,0,22)]5] (a(s, =1,%2))°

6(3, 21, ,?,“2) =

e (5,25, 2), 22
e(s, z(s, z9), 2o
- —— : (6)
T*(s, z2)
If finally p, = E(N(Q)) then by differentiating (4) with respect to z; we arrive
at p, = p,/(1 — A1b;) where

q*(s, z2) =

Py = m{(l+)\1§3)(1_C*()\l})(l_v*()\l))

FAe(M)(F+5(1 - 0" (M)}



We are now ready to define the ” service completion time” of a P; customer
as the time W, elapsed from the epoch at which this customer succeed to find a
position for service until the time the server departs for a vacation. Let N(Ws)
the number of new Pp customers that arrive during Ws and

W;(8)dt = Prt < Wy < t+dt, N(Wa) = 4], @*(s,2) =f e_stzwj(t)zgdt,
4] i=0

Then by writing for w;(t) a similar expression as in (1) and (3) and taking
Laplace transforms we arrive easily at

L(s, z(s, 22), 22)r* (s, 22) (7)

il e oy e e e

where
L(s,z1,22) = s3(a(s,0,22)){b3(a(s,0, z2)) + s3(als, z1, 22))[b3(als, 21, 22))

—b3(a(s,0, 22))|},

K(s, 21, 22) = )\1213I(a(5s51,2‘2)};§m#-
y (8)
If finally p, = E(N(W?2)) then by differentiating (7) with respect to 2, we arrive

at p, = ﬁc/(l - Albl)

_ A2 _ 4
p. = m{(l“FAlSs)(l*C(h))

+e (A)[(1 + M51)(1 = s5(M)) + Arsz(An) (b2 + 52 (1 = 85 (M)}

The "generalized service completion time ” of a P customer, Ws say, can be

defined as the time elapsed from the epoch at which this customer succeed to
find a position for service until the time the server is again idle and so free to
accept the next customer (from outside or from the retrial box). Let N(Ws)
the number of new Ps customers that arrive during Ws and

wj(t)dt = Prlt < Wy < t+dt, N(Wa) = 3], w*(s,2) = f ety " w;(t)hdt,
0 i
3=0

then it is clear that
w*(5= z9) = W*(s, 22)q" (s, 22),
and from (6), (7)

L(s,z(s,22), z2)e(s, z(s, 22), #2)
1—-K(s,z(s,z2), z2)7%(8,22) ' ®)

w*(s, z2) =

while, by suitable differentiations, the mean number of P, customers arriving
during Wy and the duration of Wy are given by

_u+n‘_) l_p
py = E(N(W>)) = {’_W B(Wy) = =5 Px. (10)



We define finally the ”generalized busy period” of P, customers as the time
interval, Wj say, from the epoch at which a P} customer arrives in an idle server
until the epoch at which the server remains idle again. If as before N(W}) is
the number of new P, customers arrive during W, and

oo o i
d;(t)dt = Prlt < Wi < tdt, N(W1) =), d*(s, 25) = f et 3 d; () ddt,
0 -

then

s j-m j=m-1

4(6) =3 > pim®si(t)x Y g W) D0 ralt) * gomrok(t),

i=0 m=0 =0 k=0
and so

d*(s, z2) = x(s, z2)s7(a(s, z(s, 22), 22))r* (5, 22)q" (s, 22). (11)

If finally we differentiate (11), with respect to z and s, we obtain
BVOV) = paf(L- 3B, By = ZEIL )

where
_ Ag

Pa = _—«\w*(h)c’*(/\l){(H A183) (1= c* (A1) + ¢ (A)[M (T + 51) + A biv* (M)}

4 Time Dependent Analysis

Let N;(t) i = 1,2 be the number of P; customers in the system at time ¢ and
denote by

b; if a P; customer in serviceatt i=1,2
s; if a P, customer in start upatt i=1,2
s3 if a Py customer in special start up at t
¢ if the server on close down at t

v if the server on vacation at t

id if the server idle at t

Il

3"

and

v — 1  an interrupted Py customer waits at t
£= 0 nointerrupted Py customer waits at t

Let us denote also by X(t) the elapsed duration at time t of any random
variable X . Define

P8 (2, t)de = Pr[Ny (8) = 4, Na(2) = 5, & = be, s = 0,z < By(t) < o + da], k=1,2
P8 (2, t)dz = Pr{Ny () = 4, Na(t) = j,& = siyue = 0,z < By (t) Sz +dz], k=1,2,3

Pl (z,8)dz = Pr[Ny(t) = i, Na(t) = ,€, = e,u, = 0,2 < C(2) < =+ da,
P8 (2, t)dz = Pr[N1(2) =4, Na() = j,&, = v,ue = 0,2 < V(£) < z + dal,
g5 (£) = Pr[N1(£) = 0, Na(t) = j, &, = id, u, = 0],



P(‘E‘)(s,zl,zg,m) = ] ‘“ZZp(E) (z,¢ zlsjdt

z—O_g-i]
= (id)
Q(s,m) = /0 S g (1)t
=0

and denote by 33;(5‘) (z,t), ﬁ(ﬁf){s, z1, 22, z) the corresponding quantities for u; =

1.Then by connecting as usual the probabilities at ¢ and £ + d?, forming Laplace
Transforms and generating functions and solving the simple differential equa-
tions we arrive for z > 0 at

P(bk)(sa 21, 22, $} = P(bk)(sazlsz% O)(l = Bk('r)) exp[_a(s7z1: 32)3;]) k= 1: 2
P(x) (8,21, 29,2) = P(sk)(s, 21, 22,0)(1 — Si(z)) exp[—als, z1, z2)x], k=1,2,3
P(C)(s, 0,z3,2) = P(C)(S,O, 22,0)(1 — C(z)) exp[—a(s, 0, z2)z],

P(u){s! 21, %9, Z) = P(u) (Sl 0: 22, 0)(1 il V(GJ}) exp[—a(s, 21, 2’2)’1‘],
(13)

while
ﬁ(bl)(s, z1,%2,T) = 13(""){5, 21, 22,0)(1 — By (xz)) exp[—a(s, 21, 22)z],
ﬁ(sk}(s, Z1,%2,%) = ﬁ(sk)(s, z1,22,0)(1 — Sk(z)) exp[—a(s, z1, z2)z]), k=1,3

ﬁ(c)(s,{), z9,T) = 15(")(3, 0, z2,0)(1 — C(=)) exp[—a(s, 0, z2)z],
(14)
and for the idle mode

azz&flz;@*(sa 2) + (s + Q" (s, 22) = 1+ P)(s,0, 22,0)v" (a(s,0, 22)). (1)

In a similar way we obtain, after algebraic manipulations, for the boundary
conditions (z = 0),
[z1 — b3 (als, 21, 22))]P®1) (s, 21, 29,0) = P1) (s, 21, 22, 0)s%(a(s, 21, 22))

+P(33)(5!31=z250)3§(a(3:z17z2)) *P(b‘)(ssoazzyo)bf(a(ssﬁ), z2))
(16)
[:""1 - bI(O‘(sa 21, 52))]P(b1)(51 21, 3230) = P(sl)(sa 1, 32:0)5;(03(3: 2192'2))

+15(53)(3, 21, 22,0)s5(a(s, 21, 22)) — ﬁ(bl)(s, 0, z2,0)b% (a(s, 0, 22)),

(17)
*5(51)(333112:2’ =Mz ‘*_‘?(WP(SE)(S,O,ZQ,O),
PUa)(s, 21, 25,0) = Ay 2y LS (20002)) p(e (5,0, 24, 0), (18)

ﬁ(sa}(81 21y 22, 0) = /\l"‘ = {(sags 23~2))P(C) ('91 O: 22, 0))



P (5,0, 25,0) = P()(s,0, z2,0)c*(a(s, 0, 22)),
Bl (5,0, 25,0) = Plb1)(s,0, 22, 0)b% (a(s, 0, 22)), (19)
P2)(5,0, 25,0) = P(2)(s,0, 22,0)s3(a(s, 0, 22)),
while finally
P()(s,0,25,0) = P®1)(s,0, 23, 0)b% (a(s, 0, z2) + P®2) (5,0, 22, 0)b3(a(s, 0, z2)),
P1) (s, 29, 25,0) = Mz1Q* (s, 22) + PM(s,0, 22, 0)[v* (a(s, 21, 22))
—v*(a(s, 0, 2))] + P2)(5,0, 22, 0) [b5 (a(s, 21, 22)) — b3 (a(s, 0, 22))],

P(s2)(5,0, 29,0) = G%Q*(S, 23) + XA2Q* (s, 22) + Pl (5,0, 23, 0)c* (a(s, 0, 22)).
(20)
Let us define now

T(s,21,22) =1— K(s,21,2)c" (a(s,0, 22)) — M(s, 21, 29),

where the functions K and M have been defined in (8) and (2) respectively.
Then by substituting from (18), (20) and (19) to {17) we arrive at

= K(s,z1,= *(5,52)=T(5,21,22) P (5,0,25,0
P(bl)(s,zl,zz,()) = (s,21,%2) Ql.‘ff—;;)(a(s(‘zl,l.:g)z)) (5,0,22,0)

with d
Qi(s, 22) = GEQ*(Sa z2) + 2Q" (s, 22),
and as the zero of the denominator in |z1| < 1, z(s, 22) say, must be zero of the
numerator too, we obtain
- K(s,x(s,z22), 22)
ple ,0, z B i Vo e ol P it
(S 2,0) T(S,ﬂ?(S,ZQ),ZQ)

—

R(s,z1,27)

z — bi(a(s, 21, 22))

QI(Sa '3"2) H (21)

B0, 21,22,0) = Qi ), @)

with

T(S: 21, 32)

R(s, 21,20) = K(s, 21, 22) — K (s,2(s, 2), 52)m-
Moreover from (18) and (20)

M(s,21,29)K(s,z(s, 29), 22)
T(s,z(s, z2), z2)s%(als, 21, 22))

B2 (5,21, 2,0) = Qi(s: 22), (28]
Pl2)(5,0,2,0) = R(s, 23) Q%(s, 22), (24)

with

K(s,z(s, 22), 22)

R(s, z2) = 1+c*(a(s,0, 22)) T(s,z(s, z2), z2)



Now from (15)
. QE(Su 5‘2) ~1

P z =
010200 = e ae,0,2)) )
with d
Q;(S, z2) = IIZ2EQ*(S, 22} + (S iy )\)Q*(S, 52)
and substituting in (19)
3(s,2) — 1
P(c) 5 - QQ(S-, az) ) 2
4:0:22:0) = 50500, 2)er (@(e,0,)) e
From (18), (19) and (24)
P (s, 21, 23,0) = 2 R(s, 29) Q3(s, %),
P®2)(5,0,2,0) = s3(a(s,0, 22)) R(s,z) Qi (s, 2a), (27)

st I _ _M(siz,= Q5(s,22)—1
P (s,21,2,0) = ey samol o

Substituting finally from (20) and (23) in (16) and denoting

hi(s,z1,22) = aL(s, z1, z2) R(s, z2) — aza/e(s, z1, 22),

h’z(sl 13 22) = )\1215;(0(5,2’1,22)) + A2L(‘91 213 32) R(S1 52) - (5 + A)/E(.S‘, %1, .2.’2),
(28)

we arrive at

ha(s,21,52) 35 Q" (s,22)4+ ha(s,21,22)Q" (s,22)]+1/ e(s,21,52)

b —— e dz
PO (s, 21,29,0) = BT Ceey) '
(29)
and using the zero of the denominator in the unit disk we obtain
d
a(zs — D(s, Zz})EQ*(S, z2) + F(s,2)Q%(s,22) = 1, (30)

where now
D(s,z9) = L(s,z(s,22), z2) R(s, z)e(s, z(s, z2), 22),
F(s,22) = s+ X — AMx(s, z2)s7(a(s, z(s, z2), z2))e(s, 2(s, z2), 22) — A2 D(s, z2)
=5+ M (1 —d*(s,22)) + Aol — D(s, 22)).
(31)

We have to state here the following theorem
Theorem 1 For (i) Re(s) > 0, lw| £ 1 (it) Re(s) = 0,|w| < 1 and (iii)
Re(s) > 0,|w| <1 and ~
p=XMb1+p,+5,>1 (32)

the equation
zo —wD(s,z0) =0 (33)



has one and only one root, 29 = ¢(s,w) say, inside the region |zq| < 1. Specifi-
cally for s =0 and w = 1, ¢(0,1) is the smallest positive real root of (38) with
$(0,1) <1ifp>1and ¢(0,1) =1 forp<1.

Proof: Comparing D(s, z) in the first of (31) with the generating function
w*(s, z2) in (9) of section 3 one realizes easily that

oo oc A
D(s,z2) = w*(s,22) = f et ij(t)zﬁdta

0 =0

i.e. D(s,z22) is in fact the Laplace transform of a generating function.

Thus for the closed contour |z3] = 1—¢ (¢ > 0 is a small number) and
under the assumptions (i) and (ii) we can always find a sufficiently small € > 0
such that

[wD(s, z2)| < |w| D(Re(s),1 —¢€) < 1—¢, (34)

while for Re(s) > 0, |w| < 1 we need in addition

d
—=D(0,1- €) |ezo< —1,

or p > 1 for the relation (34) to hold. A final reference to Rouche’s theorem
completes the first part of the proof.

Moreover for s = 0 and w = 1 the convex function D(0, z3) is a monotonically
increasing function of z3, for 0 < zp < 1, taking the values 0 < D(0,0) < 1 and
D(0,1) = 1 and so 0 < #(0,1) < 1 if p > 1, while for p < 1, ¢(0,1) becomes
equal to 1 and this completes the proof. O

Using the theorem above one can solve (see Falin & Fricker [7]) the differen-
tial equation (30) and obtain

. 1
F(.S‘, 252) ,

Q*(Sa 32) if = ¢(S, 1)1

Blat) 1 = F(s,z)

*(s,%22) = —_— ———  _dz}du, if = :
Cem= [ o ape e i aEe)
Thus the quantity Q*(s, z2) is known and so from the second of (20) and
(21)- (29) all generating functions are completely known. This completes the

time-dependent analysis of the model.

5 Stability Conditions

For a stochastic process (Y (t) ; ¢ > 0) we will say that it is stable, if its limiting
probabilities as ¢ — oo exist and form a distribution.

Consider now the points T}, in time at which, either a generalized busy period
of P customers, or a generalized completion time of a Py customer is finished,
i.e. the points at which the server becomes idle. If

0=Th<hh<Th<--,
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is the sequence of these points in ascending order and define ¢, = Na(T}, +0),
then it is easy to understand that the stochastic process Z = ({,;;n > 0) isan
irreducible and aperiodic Markov chain. Then

Theorem 2 For p < 1 the Markov chain Z is positive recurrent.

Proof. = To prove the theorem, we will use the following criterion (see
Pakes [§]):

An wrreducible and aperiodic Markov chain (Y, ; n > 0), with

state space the nonnegative integers, is positive recurrent if |6x| < co
forallk =0,1,2,... and limsupd, < 0, where §; = E[Y,11 — Y, |

k—oo
Y, = K]
For the Markov chain Z of our model, let
B ()dt = Prlt < Ty — T, <t +dt, No(Tpt1) — No(T) = m| No(Ty) = k).
Then it is easy to see that for m =0,1,2, ...

him(t) = e~ (Ptratkajt dm(t) + Aoe~(Patdatka)t W (t)

+kae—(A1+A2+ku)t * Wy (t),
while for m = —1
hk,ﬁl(t) = kae~(A1+ratka)t *wg(t},

and so

= Ad* (s, 2) + dow* (s, z) + K2w*(s, 2)
st B 2 1 1 -] :
/0 e E km (D) zTdt = st e Lk ; (35)

m=—1

and by taking derivatives above with respect to z at the point (z=1,s5 =0) we
arrive at
5. _ ME(N(W1)) + X E(N(Wa)) + kalE(N(W2)) — 1]
k /\]_ + A2 = ka ’

T % T

where E(N(W1)), E(N(W2)) have been found in (10) and (12) respectively.

Thus for p < 1 we realize that |§g| is finite for all k& and also limsupd, =
k—oo

E(NW,))—-1= 1—% < 0, and the criterion is satisfied. O

Consider now the stochastic process

Z = {{(N.(t), No(t), &): 0t < o0}
where N;(¢), £, have been defined in section 4. Then

Theorem 3 For p < 1 the process Z is stable.

11



Proof: Consider the quantity
my=E(T| {;=k)
By taking derivatives in (35) with respect to s (at z = 1) we obtain

ME(W1) + M E(Wa) + kaE(W3) + 1
A1+ A2 +ka

mg =

andifgr k£ =0,1,2,... are the steady state probabilities of the positive recurrent
Markov chain Z then

a-m=Y_ gumy = E(Wa)+{1+M[E(W:) - E(W2) ]}Z s /\ e (36)

Now it is clear that there is always a finite integer £* such that

1 1
il = y
A+ X+ (k*—1)a A+ Ao+ k*a

and so
oo 9k _ k* -1 qk
Dok T Zk 0 e e e Zk ke T < Xok=0 NarRE
% 1
+ Zk k= 9k = Ek 0 N T (1.~ Z;mg gk) < 00

and so from (36) using (10), (12) we understand that q- m < cc.

Consider finally the irreducible aperiodic and positive recurrent Markov Re-
newal Process {Z, T} = {({,, Tn) : n = 0,1,2,..}. It is easy to see that
the stochastic process Z is a Semi-Regenerative Process with imbedded Markov
Renewal Process {Z, T} and as q - m < oo it is clear that Z is stable (Cinlar [9],
Theorem 6.12 p.347).

6 Steady State Probabilities

Suppose now that p < 1. Let

P (@) = Jim p0(z,8), o = lim ¢f (1), z)—z a5 Ve,
PG, b5, )= ZZP(E‘)(JT dd, P / PRI oo,
i=0 j=0

and denote by ﬁg‘)(z), 15(6*)(31,2,’2,3:), P&)(z, 25) the corresponding quanti-
ties for u; = 1. Then it is well known that

p,(jt (.'L'} n hm p(ft)( ): lim 5] E_Stpijt)( )dt:
0

§—
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and

o
id . id : —st (id
o9 = Jim 20 = lims [ el g

P (21, 29) = PO (2, 25,0)[1 — b2 (a(0, 21, 22))])/a(0, 21, 22),
Per)(z1, 29) = P*) (2, 29,0) [1 — s%(a(0, 21, 22))]/a(0, 21, 22),
PE(0, z3) = P()(0, 22,0) [1 - c*(a(0, 21, 22))]/a(0, 0, 22),
POz, 20) = PO(0, 22,0) [1 — v*(a(0, 21, 22))]/a(0, 21, 22),

ﬁ(bl}(zl, Zo) = ﬁ(bl)(zl, 29,0) [1 — b3 (a(0, z1,22))]/a(0, 21, 22),
}5(3")(51,22) = ﬁ(sk)(zl, 20,0) [1 — sx(a(0, 21, 22))]/a(0, 21, 22),

P‘(C) (05 ZZ) = P'(c)([)! 22, D} [1 == C*(G(U, 21, 2"2))]/3(()’ 0, ’32)'

In a similar way we obtain for the boundary conditions

with

Q3 (20) = e

B0, z,0) =

15'{'51}(51, 29,0) =
16(53)(51,;:2,0) —
P(s2)(0, z5,0) =
P1) (21, 29,0) =

Pb2)(0, 25,0) =

PO)(0,2,0) = 5Bl

and so integrating with respect to z, multiplying by s and taking limits s — co
in (13), (14) we arrive at

k=1,2
k=123
(37)
k=1,3
(38)
Toaag ) i),
E(O,: - i
R el @1(%2);

M (0,21,52) K(0,5(0,22),22) f.
T(0,0(0r52),2)53 (@051 ,22) @1 (%2), (39)
R(0, z2) Q7 (),

K(0,z,= = $of =
SR R(0, 22) Qi(=2),

35('2’(0! 0,22)) R(0, 52) Q;(ZZ)a
(40)

.. Q3 (=
P(C) (01 2, 0) == @(O,D,:g)ﬂ)if(?z(o’ﬂ’:ﬂ) s

P(*3)(21,29,0) =

dz

M(0,31,22) Q3 (=)

Q" (2z2) + 220Q"(22),

2
s3(a(0,71,72)) v ((0,0,22))c*(a(0,0,52))*

Qp(2) = azzif—zcz*(zz) +2Q* (=)

PGI(21,29,0) = Mz Q*(z) + P)(0, 23, 0)[v*(a(0, 21, 22)) — v*(a(0,0, z2))]
+P®2)(0, 25,0)[b5(a(0, 21, 22)) — b3(a(0,0, 22))],

13
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h1(0, 21, 22) - Q*(= ho(0, 21, 20)Q* (=
PO (2, z5,0) = 1(0, 1 2),1_125262(1)(;-:: ;))1 2)@(2)]1 (42)

while the differential equation (30) becomes

a(z — D(0, zg))-c—g;Q*(zQ) + F(0,22)Q" () =0, (43)
with D(0, z2) = w*(0, z2). From (31)

F(0,22) = Ay (1 — d*(0, 22)) + Aa(1 — D(0, 25)) = AL — G(22)],

where
Eiu)e A1d*(0, z3) %;\)\gw*(l), 52).
Let now
() = =)

zo — w*(0,22)’

then for p < 1 the quantity zp — w*(0, zp) never becomes zero in |z| < 1 (
Theorem 1) and also

M5 205 45
lif ()= — A PAT 3 (Py +7P) _
2—1 1—p

Thus w{zp) is an analytic function in |z2| < 1 and a continuous one on the
boundary and so for any |z3| < 1 we can solve equation (43) and obtain

= === u
@)= Wen(-3 [ SoT-au,

Replacing finally @*(22) back in the generating functions and asking for the
total probabilities to sum to unity we arrive at

L= p
M) =—r
( 1—A1bl+%pd

and so the generating functions of the steady state probabilities are completely
known.

The following theorem shows that the condition p < 1 is also necessary for
a stable system.

Theorem 4 If the stochastic process Z is stable then p < 1.

Proof: Suppose that Z stable and p > 1. Then from theorem 1 the equation
zp —D(0,22) =0 has aroot 0 < ¢(0,1) < 1 and

F(0,6(0,1)) = A1(1—d™(0,$(0,1))) + A2(1 - D(0, (0, 1)) # 0.

14



By putting now ¢(0, 1) instead of z; in (43) we obtain
F(0,4(0,1))Q*(4(0,1)) = 0,

and so Q*(¢(0,1)) = Y¢\"”¢7(0,1) = 0 with 0 < ¢(0,1) < 1. Thus ¢ =
0 ¥V j and also from the generating functions in (37)- (42) it is clear that all
probabilities become zero. This of course contradicts to the hypothesis that the
system is stable.

Suppose finally that Z stable and p = 1. By taking derivatives with respect
to zo in (43) (at 2o = 1) we arrive (for p = 1) at

d
EF(0=22)|:2:1Q*(1) = —[ME(N(W1)) + M E(N(W2))]Q"(1) =0,

and so Q*(1) =3 qj-d = 0 and this again contradicts to the hypothesis that the
system is stable. O

7 Performance Measures

7.1 Probabilities of server state

In this section we will use formulas for the generating functions obtained previ-
ously, to derive expressions for the probabilities of server state. Thus by putting
z1 = Z = 1 into relations (37)-(42) we obtain easily

Plserver Idle] = P(¢=id)=Q*1) = = :\151+3vad

Pla P, customer in service] = P (& =0by)= Ab;

Pla P, customer in service] = P (£ =by) = Ay

P(server in Py start up] = P(&=5y)= T(il_)_sz.(il.).

Plserver in vacation] = Pt=v) = %_25

P[server in close down] = Ple=g= %\12'((;\11)) P f("'/\(?)l} + '\Zti\{‘ﬁ;(l}]
P[server in special start up] = P (€ =353) = M\5P (¢ =c¢)

Plserver in Py start up| = P=3s)= 51[%}-& — Aobl (A1) + Az%z;j?—;)]

7.2 Mean number of ordinary customers

For any p.d.f. a(t), let us denote now a® = f;c t?a(t)dt, i.e., denote by a®
its second moment about zero. By differentiating the generating functions with
respect to z; at the point z; = z3 = 1 we obtain the mean number of P,
customers, according to the server state, as following,

A o®

E(Ny; §=U):W

(A2 + 2Q7(1))

15



E(Ni;6=5) = MH[Q Q)+ (,\ ) (A2 +MQ™ (1)) + Aobo] + ;(2)
IR g 2SO+ )
E(Ni§ =by) = 22250
E(Nii¢ =b) = Tl)\—"l%b"?) (M3 /51 + A1 + 43)
where
= Sy [0 00 (us? - 23) 0 (s 420
A = Al(,\ls”+2§1)Q*(1}+{2&—)‘“‘f}1—§[(1—c*(A1))(A1§§2’+2g3)

+Aie” (M) (55 52 (1—v" (M) +250+ v(z))]
+,\1)\2(§§2) (1—b5 (A1) + 25152 +B£ ))

7.3 Mean number of retrial customers

To derive expressions for the mean number of customers in the retrial box we
need firstly to calculate the derivatives of some functions defined in previous
sections. Let

K 07 0,27 ) &
U(Oaﬂ?(O,ZQ) ,,2,'2) = ( IL‘( 2) 9

T(0,z(0,22), 22
QW = 3 Q" ()l = (LR,

. " 2 2) A=
Q (2).— -—! Q (ZZ}LZ_I = 2111{1\ I?a) [Angu} +A1P,(1 )Q (1)]1

=aQ"® +20°M,  Hy =aQ*® + (A +a)Q*®
(2)

where p$? and p( ) are given below in (44) and (45). For any function f*(z»)
denote f*) = d:g f*(22)|.,—, and

. - 1)
) U_U(o,l,l}fc*(,\l)s;()u)’

o) — [ 1=1"(a(0,0,22)) _ _1—f(x
o ()= (BLERED), o =g (= 50,
1 d M A2 () FAa (=1 (A
o) = ope ()], oy = 22L 0T 00)
2 2 =AINFP 00)4222 (A a2 F O (g )+ xa (1= F7 (A1)
o) = 2z op () ey = —2 2 ——— )
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while for any function w (0, z (0, ) , 22) denote W) = % w (0, (0, 22} , 22)|.,—; -Then

K(l} = AQS*(I) (/\1) + - ,\ b: 0'52‘ (1 + )\151) y

MO = e ® () + o

T—A.b; 1+ M83),

(
T = —KMe* (A1) + Adac™® () o3 — MW,
U@ = (KW (A)s(A) — TWA 043}/ (e (M)s5(M))?,

20 — Ao I:Al gor (1+A155)+21¢" (A1) (45100 Uu-)]
- c* (A1 )v* (A1) ’
L= ﬁ)\gsz(l) ()\1) + ﬁzﬁl—sﬁ (Al) (52 4+ 51 Jbﬁ) 5

Az (A1) Ay aus

_ _d . o 3
R = R(0,2)],,0 = ¢ () OO ~ s

where the functions K, M, T, e, L, R, have been defined in sections 3 and 4.
Using the above quantities we have for the retrial customers the following results.

AP S e+ M@ (@), 5 O ()
Blee=n =y vy 0zt o)
() A2 )
E(Nai{ = s2) = 055 [Mo R + (Al)] 5 () %2
2
B (Ngj € = by) = bl (M) (AR 4 —22 ) — /\233(1 (x ‘)}+’\—§E(2)
2;& = 02) = 0g85 (A1) (A2 5500 5 00) 5y
E(No; =c) =g {[ UMY + H,U 1 H. Qa+0Q7(1)) 4
(Noi& =) = oo {DeU™ + B + ooy B2 + ey 2

x (e*® (M) v* (M) +¢* (M) o*® A} + oD AU + jf(“;j;ﬁ‘; 2,

E (Ng;f = 53} = )\1{§3E (Ng;ﬁ = C) + :}Eggz)P(f = C)}

E(Npsé=s1,u=1)= ’\151[ S3(M }Jﬁ-) + s (2 RM + s {A ))] + 2: (’\).]1)—(2)‘73%

E(Ngié=s; ,u=0)= 22002000 _ ) gy )] 4 5 { 2t0Q Wy 1

v* (A1) v™ (A1)
Ty 2V A ) *
o Q)]+ 0Q°W + BRSH; + 22850 O + Qe (1)
Fh10w3 (55 (0n) Qo RO + sy — 22000 4 52(F, 4 (3))).
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Except for the quantities introduced before we need also the second derivatives
to proceed to E (Na; & = b;). Thus

Semy Y(21) _ 92 225x(2)
@ — QW(1+A131)+WJSE A3s5 7 (M)

/\20'

+(1_,\'17L)'[(A1§§2}+2§1) 1 ,\ e (1+’\151)]

’\2

~(2) A.ﬂc*(l)(,\ ) g 2 x(2
M) = 23y (L4 Mass) + 2—(5’%—5]5%- —23¢*@ (A)

+(l—*?ﬁ—75[{/\1§§2) +25;) + 1“‘§ = (14 \153)),

s . a3 < 25 (1) e
2 = ,\'38 (2) (3 )_ 2 1(»\;1)!5?2+ 1) +2/\ 251(s3 (Al)bl()‘;z':lsz(h]b (M)

+(? sxl(;:)-‘- [1 o g (b2 + MF106;) + (B8 + M5Pays + 25:5)),

A(2) _ - Ap (&M (A1)w* (Ag)+e* (A)o* m(xl)} .
= J+2( S0 ) &t

where

J o= {4 2@ (Al)_zxac-mmwm)+”%El(c"”(mv*(A1>+c*<mv*“‘<*ﬂ)+

1- )\151 1-A1hy
2 o )
*2“—‘?)[*@’,\1%* + 25104 5D + 22 (54 5 0000)]}/ [e* (M) v* (A1)]
(1=X101)2 1= b1
T = —K@c* (M) + 200" (A1) KD — A2e*®) (X)) Mogy — MO,
22) K@ _opMpg) _p@y
U( ) = c*(A1)s3(A1)
Let now for any function w (0, 21, z3) denote W} = a’i-n w (0,1, 22)|,,—; - Then
I-{'(l) = }\1 [)\2.?1055 +0'(1)j| ’ }:{(2) = /\ [ (2) + )\255_ ) 5 +2A2§10‘£?] 3
MO = [Ag&gac. -- 0'( )} . M@ =) {afﬁ) %s:gz)a'c + 2)\2530'8)] y
TW = —KEWe* (A1) +roc*® (M) Magy — MO,
T® = —K®c (M) + 20 ® () KD — A2e*® (M) Mogs — M),
5 i = . . .
R = ——-R(O, 1, 22)|sgeet = TV 4 *(A)s300) 0T — BED,
2
R = —i‘l—uR(o 1, 23)|spm1 = TU 4+ 2TWTW 4 *(X))s5(0)TE — K3,
and finally

H 5o BD

B((Noi € =by,u=1)) = 2B +
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For the computation of E ((Ng;& = by,u =0)) we need finally the deriva-
tives, at the point 23 = 1, of the functions L(0, 1, z2), h;(0,1, z3), i=1,2, and
e1(0,1,z2) = 1/e(0,1, 20) defined in (8), (28) and (5) respectively. Thus

L) = —)\26‘;(1) (A1) + Aass (A1) (52 + ElAlﬂ'b;):
L® = 23s3® (1) + 22351 (5™ () b5 (M) + 53 (M) B3 (M)
+X3s5 (A1) B M1oes + 28182 + B57) — 22255 () (B2 + 1),

R® = ding(o, 22)|spm1 = A2 @ (A1) U — 2290 (M) TD + ¢ (3) TP,

é(1) g [A;c’vs(1+A1§3)+A1c‘(A1)(ﬁ+§1A1aut}]
- A1 e (A1) (Ar) ’

M g)v" (A)+e* (M) M ()] .1 % 2132
&2 gyl e ‘]eg)—(l—Albl)JqL(,_—;;%;

b1(1=21b1)(oes (M55 +285)+e" A1) EP A oy v 4251 54+52)
™ (ApvT (A1)

[

+E£2)(acv (1+A153)+c*(,\1)(a+xlov-§1))]
c* (A])v‘ (xy)

and
A = a{E@/s5(01) + 2LO RO 4 s5(2) RO — 28V — &Py,
RSP = A A28 — 2,8 + 230
A = o{LM /s3() + s3(0)RD — 1 - &V},
AS = Magmy + 2250 — y e,
Then finally
E(Npg=bu=0)= -z {2k 3208 [apl + 007 ()] +
E§2)Q*(1)+ (R?) +25§1)) Q*a(l) (A1.«3¢+1\2—(§|c+?3u))},
with
Agoes (14 /\1§3)
Pro— s e
(1= Atby) e* (M)
(2) _ 22 e BN +ME) +et (A)aee] | Mo (M55 +28) 2, MABPp_
= A e ) TGty T2t (1=25)"
2 A25(2) _ Ao (Br1+51) . 2 (2 = .
oD = oy (L Xa1) + 2_(21(_;1;:)6(1} + ok (3 + 95,5, + @),
: ) ) s : o
P = hg{ LD+ K@ 4 2(EWe® + RWp ) + 53 (M) 6@ + Nyoag pt?

Fsy [Mocs (142183)+c" (A1) (1421 51))

(1-2181)er (1) 32

+222p, {55 (A1) +
(45)
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8 Conclusions

In this paper a queuing model with two kind of customers, ordinary and retrial
customers, is studied. To start serving both type of customers, the server needs
a start up time, while when there are no customers waiting service, the server
performs a close down period and in the sequel he departs for a single vaca-
tion. Upon discovering a Markov Renewal Process at particular time epochs,
we describe our system as a Semi Regenerating Process and use the theory of
Markov Renewal Processes to derive conditions for the system stability. More-
over, using the supplementary variable technique, we obtain expressions for the
generating functions of the system state probabilities, both in a transient and
in a steady state, and use them to derive expressions for the mean number of
customers in the system, and the proportion of time the server remains in a
particular stage (idle, busy, in start up, in close down, in vacation). Although
the model is quite general containing a large number of arbitrarily distributed
random variables, the obtained expressions are easily computable and can be
directly used to produce numerical results and to compare system performance,
under different values of the parameters.
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GLOBAL SOLUTIONS APPROACHING LINES AT INFINITY TO
SECOND ORDER NONLINEAR DELAY DIFFERENTIAL
EQUATIONS

CH. G. PHILOS, I. K. PURNARAS AND P. CH. TSAMATOS

ABSTRACT. This article is concerned with second order nonlinear delay, and
especially ordinary, differential equations. By the use of the fixed point tech-
nique based on the classical Schauder's theorem, for any given line, sufficient
conditions are established in order that there exists at least one global solution
which is asymptotic at co to thisline. In thespecial case of ordinary differential
equations, via the Banach's Contraction Principle, for any given line, condi-
tions are presented which guarantee that there exists a unique global solution
that is asymptotic at co to this line. The application of the results obtained to
second order delay, and ordinary, differential equations of Emden-Fowler type
is presented, and some examples demonstrating the applicability of the results
are given. Finally, some supplementary results are obtained, which provide
sufficient conditions for all global solutions belonging to a suitable class to be
asymptotic at co to lines.

1. INTRODUCTION

In the asymptotic theory of delay, and especially of ordinary, differential equa-
tions, an interesting problem is that of the study of solutions with prescribed as-
ymptotic behavior. This problem has been the subject of many investigations; we
restrict ourselves to mention the recent papers [2], [5], [10—20] and [22—26] as well
as the older classical articles [8, 9] (for a more extensive bibliography, see [17,18]).
It is of special interest to investigate global solutions, i.e. solutions on the whole
given interval, with prescribed asymptotic behavior. On this problem there is an
extensive bibliography (see, for example, [2], [5], [8, 9], [11-16] and [22—26]; for
more references, see [15,17,18]). The present work deals with global solutions that
are asymptotic at co to lines for second order delay, and especially ordinary, differ-
ential equations. For the basic theory of delay differential equations, the reader is
referred to the books [3,4,6].

In [17], the authors considered n-th order {n > 1) nonlinear ordinary differential
equations and studied solutions that behave asymptotically like polynomials at co.
More precisely, for each given integer m with 1 < m < n — 1, sufficient conditions
have been presented in order that, for any real polynomial of degree at most m,
there exists a solution which is asymptotic at oo to this polynomial. Conditions

1991 Mathematics Subject Classification. Primary 34K25, 34E05, 34E10; Secondary 34D05,
47HI10.

Key words and phrases. Nonlinear differential equation, delay differential equation, ordinary
differential equation, asymptotic behavior, asymptotic properties, asymptotic expansions, global
solutions, asymptotic to lines solutions, fixed point theory.
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have been alse given, which are sufficient for every solution to be asymptotic at oo
to a real polynomial of degree at most n — 1. The application of the results in [17]
to the special case of second order nonlinear ordinary differential equations leads
to improved versions of the ones contained in the recent paper by Lipovan [10] and
of other related results existing in the literature. Note that the nonlinear term, in
the differential equations considered in [17], depends only on the time ¢ and the
unknown function z.

In a subsequent paper [18], the first and the third author investigated solutions
approaching polynomials at co to the more general case of n-th order (n > 1)
nonlinear ordinary differential equations, in which the nonlinear term depends on
the time ¢ and on z,z’,...,z"), where z is the unknown function and N is an
integer with 0 < N < n — 1. The results obtained in [18] extend those in [17]
concerning the particular case where NV = (.

It must be noted that, in [17,18] (as well as in [10]), only nonlinear ordinary dif-
ferential equations are considered and that, in these recent works, solutions defined
for all large ¢, but not always global, are investigated.

In the present work, we deal with second order nonlinear delay differential equa-
tions, and especially ordinary differential equations, and we study global solutions
that are asymptotic at co to lines. More precisely, for any given line &t +1n (€ and
7 are real constants), we establish sufficient conditions for the existence of at least
one global solution x such that z(t) = £t +n+0(1) and 2'(t) = £ +0(1), for £ — co.
In the special case of second order nonlinear ordinary differential equations, for
any given line £t + i (with &, 7 € R), we also present conditions guaranteeing the
existence and uniqueness of a global solution z satisfying z(t) = £t +n -+ o(1) and
z'(t) = € + o(1), for t — oo. Moreover, we apply our results to the case of second
order delay, and especially ordinary, differential equations of Emden-Fowler type,
and we give some examples in order to demonstrate the applicability of the results.
Finally, we provide sufficient conditions for every global solution = that belongs to
a suitable class to satisfy x(t) = &t + 7+ o(1) and z'(t) = € + o(1), for t — oo,
where £ and 7 are real constants (depending on the solution ).

It is an open question whether the results of the present paper can be extended
to the more general case of n-th order (n > 1) nonlinear delay, and especially ordi-
nary, differential equations. For such differential equations, it is an open problem to
investigate the existence (and the uniqueness, in the special case of ordinary differ-
ential equations) of global solutions that are asymptotic at co to real polynomials
of degree at most m, where m is a given integer with 1 <m <n — 1.

Throughout the paper, for any interval [ of the real line R and any subset £ of
R, by C(I,§) we will denote the set of all continuous functions defined on I and
having values in 2. Moreover, r will be @ nonnegative real constant. Furthermore, if
t is a point in the interval [0, oc) and y is a continuous real-valued function defined
at least on [t — r,¢], the notation x; will be used for the function in C([-r,0],R)
defined by the formula

xe(t)=xE+7) for —r <7 <0.

We notice that the set C([—r,0],R) is a Banach space endowed with the usual
sup-norm ||-||:

¥l = max |¢(r)] for ¢ € C([-r,0,R).

-r<r<0
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Consider the second order nonlinear delay differential equation
(E) z"(t) + f(t, 24, 2'(t)) = 0,
where f is a continuous real-valued function defined on the set [0, 00)xC([—r, 0], R)x

R.

Consider also, in particular, the second order nonlinear delay differential equation
(Eo) z”'(t) + fo(t, z:) = 0,

where fo is a continuous real-valued function defined on the set [0, 00)xC([-r, 0], R).

We are interested in solutions of the delay differential equations (E) and (Eg) on
the whole interval [0, c0). By a solution on [0, 00) of (E) [respectively, of (Eo)], we
mean a function x in C([—r, c0), R) which is twice continuously differentiable on
the interval [0, c0) and satisfies (E) [resp., (Eq)] for all ¢ > 0.

Furthermore, let us concentrate on a particular class of delay differential equa-
tions. More precisely, let us consider the second order nonlinear delay differential
equation

(E") ' (t) + g(t, z(t — T1(2)), ..., z(t — T (2)), 2'(t)) = 0
and, in particular, the second order nonlinear delay differential equation
(Ep) z"(t) + go(t, x(t — T1(2)), ..., z(t — T (£))) = 0,

where m is a positive integer, g is a continuous real-valued function on [0,00) x
R™*1, gq is a continuous real-valued function on [0,00)xR™, and T; (j = 1, ...,m)
are nonnegalive continuous real-valued functions on the interval [0, oo) with

~max supTj(t) =r.
j=1,...,mt20

If the delay differential equation (E) or (Ep) is to be equivalent to (E’) or (Ej),
respectively, we must define
f(ta ¥, Z) = g(t, w(_Tl (t))7 e ¢(~Tm(t)), z)
for any (t,v,z) € [0,00) x C([-7,0],R) x R

or
fO(t’ 'U')) = gﬂ(ts w(_Tl (t))’ sy ¢(_Tm(t))) for any {t, 'w) € [0, OO) x C({—T’ OLR)-:
respectively.

We restrict our attention only to solutions of the delay differential equations (E')
and (Ej) on the whole interval [0,00). A solution on [0,00) of (E) [resp., of (Ej)
is a function x in C([—r, 00), R), which is twice continuously differentiable on the
interval [0, co) and satisfies (E') [resp., (Ef)] for all ¢ > 0.

Now, let us consider the special case of ordinary differential equations. That is,
consider the second order nonlinear ordinary differential equation

(D) () + h(t,z(t),2'(t) =0
and, especially, the second order nonlinear ordinary differential equation
(Do) () + ho(t, z(t)) = 0,

where h is a continuous real-valued function on [0,00) x R2, and hg is is a contin-
uous real-valued function on [0,00) x R.

We confine our discussion only to solutions of the differential equations (D) and
(Do) on the whole interval [0, co).
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The results of the paper are stated in Section 2, while their proofs are given
in Sections 3—5. Section 6 is devoted to the application of the results to second
order (delay or, especially, ordinary) differential equations of Emden-Fowler type
as well as to some examples demonstrating the applicability of our results. In
the last section (Section 7) some supplementary results are given, which can be
characterized as a complement of the results of the present work.

2. STATEMENT OF THE RESULTS

Our results in this paper are presented in the form of four theorems (Theorems
1—4) and four Corollaries (Corollaries 1—4). In Theorem 1 (respectively, Theorem
2), for given real constants £ and 7, sufficient conditions are established in order
that the delay differential equation (E) [resp., (Eo)] have at least one solution z on
the interval [0, o) such that z(t) = &t +n + o(1) and 2/(t) = € + o(1), for t — co.
Corollary 1 (resp., Corollary 2) is the application of Theorem 1 (resp., Theorem
2) to the particular case of the delay differential equation (E’) [resp., (Ej)], while
Corollary 3 (resp., Corollary 4) is the specialization of Theorem 1 (resp., Theorem
2) to the ordinary differential equation (D) [resp., (Dg)]. In Theorem 3 (resp.,
Theorem 4), for given real constants £ and 7, conditions are presented, which are
suffficient for the ordinary differential equation (D) [resp., (Dp)] to have exactly one
solution x on the interval [0, co) such that z(t) = &t +7n+o0(1) and z'(t) = € +o(1),
for £ — oo.

Theorem 1. Assume that
(2.1)  |f(t, 9, 2)| S F(t, Y], |2])  forall (t,4,2) € [0,00) x C([-7,0],R) x R,

where F' is a nonnegative real-valued function defined on [0, 00)xC ([—r, 0], [0, c0))x
[0, 00), which satisfies the Continuity Condition:

(C) F(t, [xt], IX'(t)]) is continuous with respect to t in [0,00) for each given
function x in C ([—r,00), R) which is continuously differentiable on the interval
[0, c0).

Suppose that:

(B) For each t > 0, the function F(t,-,-) is increasing on C ([—r,0],[0,00)) x
[0, c0) in the sense that F(t,,z) < F(t,w,v) for any ¥, w in C ([-r,0],[0,00))
with ¢ < w (ie. ¥(7) < w(7) for —r <7 <0) and any z, v in [0,00) with z < v.

Let £ and 7 be given real constants, and let there exist a real number ¢ with
e > max{|£|,n|} so that

(2.2) /OootF(t,%,c)dt = B i
and
(2.3) f F(t,m c)dt < c— ],

where the function v in C ([—r, 00), [0,00)) depends on ¢ and is defined by

¢ for —r<t<0
(2.4) At) =
elt+1) fort=0.
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Then the delay differential equation (E) has at least one solution x on the interval
[0, c0) such that

(2.5) zt) =& +n+o0(l) fort— oo

and

(2.6) z'(t) =&+ o(l) fort — oo;

in addition, this solution x satisfies

(2.7) z(t) =z(0) for —r<t<0,

(2.8) §e+n—(e—In)) Sz(t) <&t +n+(c—nl) for everyt >0
and

(2.9) E—(c— &) S2/(t) <E+(c—|¢]) for every t > 0.

Theorem 2. Assume that
(2.10) [fo(t,¥)| < Fo(t,|4]) for all (t,4) € [0,00) x C([-r,0],R),

where Fy is a nonnegative real-valued function defined on [0, 0o) x C ([—r, 0], [0, 00)),
which satisfies the Continuity Condition:

(Co) Folt, |xe]) is continuous with respect to t in [0,00) for each given function
x n C([-r, o), R).

Suppose that:

(Bo) For each t > 0, the function Fy(t,-) is increasing on C ([—7,0],[0,00)) in
the sense that Fy(t,v) < Fo(t,w) for any ¢, w in C([-r,0],[0,00)) with ¥ < w
(ive. 9(r) S w(r) for —r <7 <0),

Let & and 1 be given real constants, and let there exist a real number ¢ with
¢ > max{|¢|, [n|} so that

(2.11) Ac%wMﬁgumwmmm,

where the function <y in C ([—r, 00}, [0,00)) depends on ¢ and is defined by (2.4).
Then the delay differential equation (Eq) has at least one solution x on the interval
[0,00) such that (2.5) and (2.6) hold; in addition, this solution x satisfies (2.7)
and:

(212) &t +n—(c—max{l¢], In]}) < z(t) < & +n+ (¢ — max{|¢], [7]})
for every t >0

and

(2.13) £ — f Fo(s,vs)ds < z'(t) < ¢ —O—f Fy(s,vs)ds  for every t > 0.
0 0

(Note that, because of (2.11), [ Fo(s,vs)ds is finite.)

Corollary 1. Assume that
ig(t, Y1y eeiy Yms Z)‘ S G(t: ‘yl[ yreey |me 1 |Z|) fO'T' (ty Ylyeeey Ym, Z) & [Dv OO) X Rm+17

where G' is a nonnegative continuous real-valued function on [0,00) x [0, 00)™ 1,
Suppose that:
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(B") For each t > 0, the function G(t, -, ..., ") is increasing on [0, c0)™*! in the
sense that G(t, Y1, ...y Um, 2) < G(E, w1, ..., Wi, V) fOT any (Y1, -+, Yms 2), (W1, ooy Wi, V)
in [0,00)™ ! with y1 < w1, ey Y < Wi, 2 < 0.

Let & and 1 be given real constants, and let there exist a real number ¢ with
c > max{|¢|, |n|} so that

/DOO tG(t, p1(t), - Pt} C)dt < e~ |7
and -
/0 G(t,pl(t),-..,pm(t),(?)dtSC—Jf],

where, for each j € {1,...,m}, the function p; in C([0,00),[0,00)) depends on c
and s defined by

¢, if 0<t<Ty(t)
(2.14) pi(t) —{

e(t—Ty(t) + 1), of &= Tx(t)
Then the delay differential equation (E') has at least one solution = on the interval

[0,00) such that (2.5) and (2.6) hold; in addition, this solution z satisfies (2.7),
(2.8) and (2.9).

Corollary 2. Assume that

|90(t1'yl: "':ym)l S Go(t: Jyli 3 reey |ym.l) fﬂ?" (t:yla aym) & [O!OO) X R‘mv

where Go is a nonnegative continuous real-valued function on [0,00) x [0, 00)™.
Suppose that:

(By) For each t > 0, the function Go(t,-,...,-) is increasing on [0,00)™ in the
sense that Go(t, 1, ..., Ym) < Go(t, w1, ...,wm) for any (Y1, ..., Ym)s (W1, ..., Wyy) in
[0, 00)™ with y1 < w1, ..., Y < Wpy.

Let § and n be given real constants, and let there exist a real number ¢ with
¢ > max{|¢|,|n|} so that

(2.15) [Om tGo(t, p1(t), s pm(t))dt < ¢ — max{[¢] , |n]},

where, for each j € {1,...,m}, the function p; in C([0,c0),[0,00)) depends on ¢
and is defined by (2.14). Then the delay differential equation (E)) has at least one
solution x on the interval [0,c0) such that (2.5) and (2.6) hold; in addition, this
solution z satisfies (2.7), (2.12), and

3 ﬁf Go(s, p1(s), -y pm(s))ds < 2'(t) < E+/ Go(s, p1(s), ..., pm(s))ds
0 0
for every t = 0.
(Note that, because of (2.15), [~ Go(s, p1(8), ..., pm(s))ds is finite.)

Corollary 3. Assume that
(2.16) (ty, 2)| < H(E Jyl, |2])  for all (t,y,2) € [0,00) x R?,
where H is a nonnegative continuous real-valued function on [0, c0) X [0, 00)2. Sup-
pose that:

(A) For each t > 0, the function H(t,-, ) is increasing on [0,00)? in the sense
that H(t,y,2) < H(t,w,v) for any (y, z), (w,v) in [0,00)? with y < w, z < v.
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Let € and 7 be given real constants, and let there exist a real number ¢ with
c > max{|é|,|n|} so that

(2.17) f@o tH(t,c(t+1),c)dt < c—|n
0

and

(2.18) /w H(t, ot + 1), 0)dt < c— |
0

Then the ordinary differential equation (D) has at least one solution = on the in-
terval [0,00) such that (2.5) and (2.6) hold; in addition, this solution x satisfies
(2.8) and (2.9).

Corollary 4. Assume that

(2.19) Ihot, )] < Ho(t,lyl) for all (£,3) € [0,00) X R,

where Hy is a nonnegative continuous real-valued function on [0, 00) % [0, 00). Sup-
pose that:

(Ag) For each t > 0, the function Ho(t,-) is increasing on [0,00) in the sense
that Ho(t,y) < Ho(t,w) for any y, w in [0, 00) with y < w.

Let £ and n be given real constants, and let there exist a real number ¢ with
e > max{|¢|,|n|} so that

(2.20) /DOU tHo(t,c(t + 1))dt < ¢ — max{|¢], |n|}.

Then the ordinary differential equation (Do) has at least one solution = on the
interval [0,00) such that (2.5) and (2.6) hold; in addition, this solution x satisfies
(2.12) and

(2.21) £- foo Hols, os +1))ds < 2'(£) < £ + foo Hilayela+ 1))ds
i ’ for every t > 0.
(Note that, because of (2.20), [;° Ho(s,c(s + 1))ds is finite.)
Theorem 3. Let the following generalized Lipschitz condition be satisfied:
(2.22)  |h(t,y, 2) — h(t,w,v)| £ L(t) max{|y — w|, |z — v|}
for all (t,y,2), (t,w,v)in [0,00) x R?,

where L is a nonnegative continuous real-valued function on the interval [0, c0)
such that

(2.23) max{/omt(t+1)L(t)dt, /Doo(t+1)L(t)dt} <1

Moreover, assume that (2.16) holds, where H is a nonnegative continuous real-
valued function on [0,00) X [0,00)?. Suppose that (A) is satisfied.

Let £ and n be given real constants, and let there erist a real number c with
¢ > max{[{|,|n|} so that (2.17) and (2.18) hold. Then the ordinary differential
equation (D) has exactly one solution x on the interval [0, c0) with

(2.24) |z(0)] < ¢
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and
(2.25) |z'(t)] < e for every t >0,

such that (2.5) and (2.6) hold; in addition, this unique solution z satisfies (2.8)
and (2.9).

Theorem 4. Let the following generalized Lipschitz condition be satisfied:
(2.26)  |ho(t,y) — ho(t,w)| < Lo(t) |y —w| for all (t,y), (t,w)in [0,00) x R,

where Lo is a nonnegative continuous real-valued function on the interval [0, c0)
such that

(2.27) fomt(t + 1) Lo(t)dt < 1.

Moreover, assume that (2.19) holds, where Hy is a nonnegative continuous real-
valued function on [0,00) x [0, 00). Suppose that (Ag) is satisfied.

Let £ and n be given real constants, and let there exist a real number ¢ with
c > max{|¢], |n|} so that (2.20) holds. Then the ordinary differential equation (Do)
has exactly one solution = on the interval [0, c0) with

(2.28) lz(t)] <e(t+1) for every t >0,

and such that (2.5) and (2.6) hold; in addition, this unique solution x satisfies
(2.12) and (2.21).
Note: Inequalities (2.24) and (2.25) imply (2.28).

An important remark. (i) In the conclusions of Theorems 1 and 3 and of
Corollaries 1 and 3, the solution z satisfies (2.8) and (2.9).
Assume that € > 0 and 17 > 0. Then (2.8) and (2.9) are written as

(2.8") Et—(c—2n) <z(t) <& +c foreveryt >0
and
(2.9 —(c—2¢) <z'(t) <c foreveryt >0,

respectively. Furthermore, in addition to the hypothesis ¢ > € and ¢ > 0, let us
suppose that ¢ < 2€ and ¢ < 2. We have thus 0 <€ <c<2fand 0 <np<c< 2.
Then (2.8") guarantees that the solution x is positive on the interval (0,00) and
such that tlirxoaom(t) = co . Also, from (2.9") it follows that z'(t) > 0 for ¢t > 0 and
so z is strictly increasing on the interval [0, co).

Analogously, in the case where 26 < —¢c < £ < 0 and 2n < —c < 7 < 0,
we can see that the solution x is negative on the interval (0,00) and such that
113&:1:@) = —oo, and that z is strictly decreasing on [0, co).

(ii) The solution z in the conclusion of Theorem 2 is such that (2.12) and (2.13)
are satisfled. (Analogous inequalities are fulfilled for the solution x in the conclu-

sions of Corollaries 2 and 4, and of Theorem 4).
Let £ and n be positive. Then (2.12) becomes

(2.12") &t —[c— (n+max{{,n})] < z(t) < & + [c— (—n + max{¢, n})]
for every t > 0.

We have assumed that ¢ > £ and ¢ > 7. In addition to this assumption, let
us suppose that £ > fooo Fo(s,¥s)ds and ¢ < n+ max{€,n}. So, we have 0 <
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fooo Fo(s,v)ds <& <cand 0 <n < ¢ <n+max{é,n}. It follows from (2:124)
that the solution x is positive on the interval (0,00) and satisfies ihlim %) = &5
—00

Moreover, (2.13) ensures that z'(t) > 0 for ¢ > 0 and consequently z is strictly
increasing on the interval [0, 00).

In a similar way, we can conclude that, if —c < & < — f[;x’ Fo(s,vs)ds < 0 and
n+max{&,n} < —c <7 <0, then the solution = is negative on the interval (0, o)
with tl_iﬁjm(t) = —cc, and strictly decreasing on [0, 00).

Before closing this section, we must point out the connection between Theorem
1 and Theorem 2. It is obvious that Theorem 1 concerning the delay differential
equation (E) is also applicable to the particular case of the delay differential equation
(Eo). It is remarkable that the result obtained by such an application is different
from Theorem 2 dealing with the delay differential equation (Ep). As it is evident,
the conclusion of Theorem 2 cannot be derived from the conclusion of Theorem 1.
What is more, the spaces on which Schauder’s theorem is applied in the proofs of
these two theorems are different one another. Therefore, the proofs themselves are
significantly different. Example 7 at the end of Section 6 illustrates the difference
between the conlcusion deduced by Theorem 1 and the conlcusion deduced by
Theorem 2.

Analogous remarks can be made for the connection between Corollary 1 and
Corollary 2, between Corollary 3 and Corollary 4, and between Theorem 3 and
Theorem 4.

3. PROOF OF THEOREM 1

The proof of Theorem 1 is based on the use of the following Schauder’s fixed
point theorem (see Schauder [21]).

The Schauder theorem. Let S be a Banach space and X any nonempty
convez and closed subset of S. If M is a continuous mapping of X into itself and
MX s relatively compact, then the mapping M has at least one fized point (i.e.
there exists an © € X with = Mz).

Let BC([0,00),R) be the Banach space of all bounded continuous real-valued
functions on the interval [0, co), endowed with the sup-norm ||-|| defined by

lu|| = Eli}g lu(t)] for u € BC([0,00),R).

We need the following compactness criterion for subsets of BC([0, 0o), R), which is
a consequence of the well-known Arzela-Ascoli theorem. This compactness criterion
is an adaptation of a lemma due to Avramescu [1].

Compactness criterion. Let U be an egquicontinuous and uniformly bounded
subset of the Banach space BC([0,00),R). If U is equiconvergent at co, it is also
relatively compact.

Note that a set U of real-valued functions defined on the interval [0, co) is called
equiconvergent at oo if all functions in U are convergent in R at the point co and,
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in addition, for each € > 0, there exists T' = T'(¢) > 0 such that, for all functions u
in U, it holds {u(t) — lim u(s)l < € for every t > T.
§—00

Throughout the ramainder of this section, by S we will denote the set of all func-
tions in C([—r, o0), R), which have bounded continuous derivatives on the interval
[0, 00). The set S is a Banach space endowed with the norm J - } defined as follows

K ul= max{ max |u(t)|, sup [u'(t)f} forue S.
—r<t<0 t>0
To prove Theorem 1, we first establish the following proposition.

Proposition 1. Assume that (2.1) holds, where I is a nonnegative real-valued
function defined on [0, 00)xC ([, 0], [0,00))x [0, 00), which satisfies the Continuity
Condition (C). Suppose that (B) is satisfied.

Let £ and 1 be given real constants, and let ¢ be a positive real number such that

(3.1) fm £y, clde2 oo,
0
where the function v in C ([—r,00),[0,00)) depends on ¢ and is defined by (2.4).
Let also X be the subset of S defined by
(3.2) X={ze€8: fzl<e}
Then the formula
n—J5 sf(s,xs,2'(s))ds for —r <t<0

(3.3) (Mz)(t) = {
Et+n— [°(s—t)f(s,z5,2'(s))ds fort >0

makes sense for any function z in X, and this formula defines a continuous map-
ping M of X into S such that MX is relatively compact.

Proof of Proposition 1. Let x be an arbitrary function in X. From the definition
of X, via (3.2), it follows that

(3.4) lz(t)] <c for —r<t<0
and
(3.5) |2’ ()] < ¢ for every t > 0.

Inequality (3.4) gives, in particular, |z(0)| < ¢. So, by using this fact and (3.5), we
obtain for t > 0

lz(t)| =
i.e. we have
(3.6) |z(t)] < e(t+1) for every t > 0.
In view of (2.4), from (3.4) and (3.6) we conclude that
lz(t)| < y(t) fort>—r

m{0)+/0 z'(s)ds

t
< |:c(0)|+f 12/()] ds < o+ et,
0

and consequently
(3.7) |z¢| <y for all ¢ > 0.



GLOBAL SOLUTIONS APPROACHING LINES AT INFINITY 33

By taking into account (3.7) and (3.5) and using the assumption (B), we get
P, |ze], |2/ (0)|) < F(t,y,¢) fort=>0.
On the other hand, because of (2.1), it holds
|F(t, ze, ' (£))] < F(t, |ze|, |2 (1)]) for ¢ > 0.
Thus, we find

(3.8) |f(t,ze, 2'(t))| < F(t,v2,¢) for every t > 0.
Furthermore, by combining (3.1) and (3.8), we have

(3.9) fomﬂf(t,:ct,:c’(t))i dt <66,

This, in particular, implies

(3.10) /000 |f(t, 2o, 2'(2))] dt < o0,

So, in view of (3.9) and (3.10), it is true that

(3.11) /000 tf(t,z¢,z'(t))dt and /ODO f(t,zy,2'(£))dt  exist in R.

As (3.11) holds true for all functions = in X, we can immediately see that the
formula (3.3) makes sense for any function z in X, and this formula defines a
mapping M of X into C([—r,0),R). We will show that M is a mapping of X
into S, i.e. that MX C 5. To this end, let us consider an arbitrary function z in
X. Then, by taking into account (3.8), from (3.3) we obtain for ¢t > 0

|(Mz)'(t)] = €+ft f(s, 25,2 (5))ds S\ﬁH/ﬁ |f(5,25,2'(5))| ds
F 1 18 d S DOF 1y 18 d *

< fil+ [ Flemads<lel+ [ Fls0ds
Therefore,
(3.12) [(Mz)' (t)| <@ forallt>0,
where
(3.13) Q= |£|+/ F(s,7vs,c)ds.

0

Note that (3.1) guarantees, in particular, that

oo
(3.14) f F(t, v, e)dt < oo
0

and so @Q is a nonnegative real constant. Inequality (3.12) means that (Mz)" is
always bounded on the interval [0, 00), and consequently Mz belongs to S. We
have thus proved that, for any function z in X, Mz € S, i.e. that MX C S.

Now, we shall prove that M X is relatively compact. From (3.3) it follows that,
for each x € X, the function Mz is constant on the interval [—r, 0]. By taking into
account this fact as well as the definition of the norm }f - }f, we can easily conclude
that it suffices to prove that the set

U ={((Mz)|[0,00))': ze X}
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is relatively compact in the Banach space BC([0,00),R). Each function z in X
satisfies (3.12), where the nonnegative real number @ is defined by (3.13) (and it
is independent of x). This ensures that U is uniformly bounded. Furthermore, for
any function z in X, it follows from (3.3) that

/ o (3)ds| < | "\ f (s, 20, 2'(s)) s

for all t > 0, and consequently, by taking into account (3.8), we derive

|(Mz)'(

(3.15) [(Mz)'(t) — €| < /Loo F(s,vs,c)ds for every t > 0.

For any function z in X, (3.15) together with (3.14) imply that
tlim (Mz)(t) =

By using again (3.14) and (3.15), we immediately see that U is equiconvergent at
oo, Now, by (3.8), for any function z in X and every ¢, t; with 0 < ¢; < ¢, from
(3.3) we obtain

(M) (t1) — (Mz)'(t2)]
Hf+/:o f(s J:s,s':’(s))ds] — [,5+ :3 f(s,zs,ml(s))ds]

ta

Fls, 2., 2(8))ds

t

3]
= F(s,vs,c)ds.

t1
Thus, by virtue of (3.14), it is easy to verify that U is equicontinuous. By the given
compactness criterion, the set U is relatively compact in BC([0,c0),R). Hence,

the relative compactness of M X (in S) has been established.

Next, we will show that the mapping M is continuous. For this purpose, let us
consider an arbitrary function z in X and a sequence (a:["i)u>1 of functions in X

with

Il

Il

s/2|f(s z4,2/(s))] ds

t1

ki —limzM = 2.

v—00

It is not difficult to verify that

lim z(t) = 2(t) uniformly in ¢ € [—7, 00)
and
lim (z™)/(t) = 2'(t) uniformly in ¢ € [0, c0).

V—0Q

On the other hand, by (3.8), it holds
|f(t,:1:i"], (m[“])’(t))| < F(t,w,¢) foreveryt>0 and forallv>1.

Thus, because of (3.1) and (3.14), one can apply the Lebesgue dominated conver-
gence theorem to obtain, for ¢ > 0,

tim [ (s —)f(s, 21, (1) (s))ds = / " — 7 e (s

v—00 t

So, from (3.3) it follows that
lim (Mz¥)(t) = (Mz)(t) fort> —r.
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It remains to establish that this pointwise convergence is also Jf - }f —convergence,
i.e. that

(3.16) Kok = lim Mz = Mz,

To this end, we consider an arbitrary subsequence (Mzll) _ of (M M) o

Since the set M X is relatively compact, there exist a subsequence (I\/."m[“'*“])y>1 of

(M'zf“"])u and a function « in S so that

>1
KW= lim Mzl =g

Y00

As the }f - } —convergence implies the pointwise convergence to the same limit
function, we must have uw = Mz. That is, (3.16) holds true. Consequently, M is
continuous.

The proof of the proposition has been completed.

Now, we proceed to the proof of Theorem 1.

Proof of Theorem 1. Let X be defined by (3.2). Clearly, X is a nonempty
conver and closed subset of S. Assumption (2.2) guarantees, in particular, that
(3.1) holds. So, by Proposition 1, the formula (3.3) makes sense for any function
z in X, and this formula defines a continuous mapping M of X into S such that
MX 1is relatively compact. We shall prove that M is a mapping of X into itself,
i.e. that MX C X. Let us consider an arbitrary function z in X. Then, by taking
into account (3.8), from (3.3) we obtain, for —r <t < 0,

(Mz)(E) =] = \—- /Ome(S,ws,m’(S))dS < /Omsf(s,rs,a:’(s))lds

< / sF(s,vs,c)ds
0

and consequently, in view of (2.2), we find
(3:17) [(Mz)(t) —n| <c—|n| for —r <t <0,
Moreover, by using again (3.8}, from (3.3) we derive for t > 0

|(Mz)'(t) - ¢ = /tmf(sams,m’(S))dS S/fm |f (s, 25, 2(s))| ds

oo o0
< / F(s, 'ys,c)dsgf F(s,vs,c)ds
t 0

and so, by (2.3), we get
(3.18) |(Mz)'(t) — €| <c— ¢ forevery t > 0.
Inequalities (3.17) and (3.18) give

[((Mz)(t)| <c for —r <t <0

and
[(Mz)(t)] <e forevery t >0,
respectively. From the last two inequalities it follows that J} Mz ¥< ¢, which means

that Mz belongs to X. We have thus proved that Mz € X for each z € X, i.e.
that MX C X.
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Now, we apply the Schauder theorem to conclude that there exists at least one
zin X with z = Mz, i.e.
n—Jfo sf(s,zs,z'(s))ds for —r <t <0
(3.19) z(t) =
Et+n— [ (s —t)f(s,2s,2'(s))ds fort>0.
From (3.19) we immediately obtain
z'(t) = —f(t,x¢,2'(t)) forallt>0

and so z is a solution on [0, co) of the delay differential equation (E). As z belongs
to X, (3.11) holds true and consequently

oo

lim (s —t)f(s,zs,2'(8))ds =0 = tﬁm /oo Fla,denz'(8))ds,
—oo [,

t—o0 [,
By using this fact, from (3.19) we can easily conclude that the solution z is such
that (2.5) and (2.6) hold. Furthermore, (2.7) is an immediate consequence of (3.19).
Moreover, by taking into account (3.8), from (3.19) we obtain for ¢ > 0

() - (€t +m)| = |- ftm(s—t)f(ws,:c’(S))dS < /f(s—ﬂf(s,zs,a:'(s))ds

IA

oo oo
f (8 —t)F(s,7s,0)ds < / sF(s,vs,c)ds.
t 0

Thus, in view of (2.2), we have

(3.20) |z(t) — (&t +n)| <c—|n| for every t > 0.
Also, since x = Mz, it follows from (3.18) that
(3.21) |z'(t) — €] < c—|¢| for every t > 0.

Finally, we see that (3.20) and (3.21) coincide with (2.8) and (2.9), respectively.
The proof of the theorem is complete.

4. PROOF OF THEOREM 2

The proof of Theorem 2 is also based on the use of the Schauder’s theorem
stated in the previous section. The compactness criterion for subsets of the Banach
space BC([0, 00), R), which is given in Section 3, will also be needed in the present
section.

In this section, So stands for the set of all functions u in C([-r,c0), R) with
u(t) = O(t) for t — oo. The set Sy is a Banach space endowed with the norm §f - Jro
defined by the formula

K ulfo= max{ ”é"’}’éom(t)' ; SUPM} for u € 5.
g St

>0t +1
The following proposition will be used in order to prove Theorem 2.
Proposition 2. Assume that (2.10) holds, where Fy is a nonnegative real-

valued function defined on [0, 00) x C'([—r, 0], [0, 00)), which satisfies the Continuity
Condition (Cqy). Suppose that (Bg) is salisfied.



GLOBAL SOLUTIONS APPROACHING LINES AT INFINITY 37

Let £ and n be given real constants, and let ¢ be a positive real number such that

o0
(4.1) f £Fo (£, 1.)dt < oo,
0

where the function v in C([-r,00),[0,00)) depends on ¢ and is defined by (2.4).
Let also Xo be the subset of Sy defined by

(4.2) Xo={zeSy: fzh<c}.
Then the formula

n—Jy sfo(s,zs)ds for —r <t <0
(4.3) (Moz)(t) =
Et+n— [T (s—t)fols,zs)ds fort>0

makes sense for any function z in Xo, and this formula defines a continuous map-
ping My of Xo into Sy such that MyXq is relatively compact.

Proof of Proposition 2. Consider an arbitrary function z in X,. By taking into
account the definition, by (4.2), of the set Xy, we immediately see that = satisfies
(3.4) and (3.6). These two inequalities together with (2.4) imply |z(t)| < (t) for
t > —r. Consequently, (3.7) holds true. By using (3.7) and the assumption (Bg),
we find

Fo(t,|z]) < Fo(t,y) fort=0.
But, in view of (2.10), it holds

|folt,ze)| < Fo(t, xe|) for ¢ > 0.
Hence, we have
(4.4) |fo(t,zt)| < Folt,v:) for every t > 0.

From (4.1) and (4.4) it follows that

(4.5) jo ™ 1oty s) dt oo,

which ensures, in particular, that

(4.6) /:O |folt, zy)| dt < 0.

Inequalities (4.5) and (4.6) guarantee that

o0 oo
(4.7) f tfo(t, z¢)dt and f Jo(t,z:)dt  exist in R.
0 0

Since (4.7) holds true for every function z in Xy, we can immediately conclude
that the formula (4.3) makes sense for any function = in Xo, and this formula
defines a mapping My of Xg into C([—r, c0), R). Furthermore, we shall prove that
My is a mapping of Xp into Sp, i.e. that MpXp C Sp. For this purpose, let us
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consider an arbitrary function z in Xy. Then, by taking into account (4.4), from
(4.3) we derive for ¢ > 0

K%T¥ﬂ!=: ?jf_tillw“_ﬂhwﬁﬂﬁ

< By [0l zlas
< max{lgl ik + [ (s~ 1) fo(o, o)l d
< max{lg, o} + [ (o = OFa(s, v)ds
< max{lel.fnl} + [ sFa(s s

So, if we set

(48) Qo = max{lel, nl} + [ sFa(si)ds,

then we have

(4.9) Jﬁ%f¥ﬂngo for all t > 0.

We note that, because of (4.1), Qo is a nonnegative real constant. It follows from
(4.9) that Moz belongs to Sp. Thus, it has been established that Moz € Sy for
every function z € Xj, i.e. that MyXy C 9.

Now, we will show that My X is relatively compact. We observe that, for any
function x in Xg, it follows from (4.3) that

(Moz)(s)
s+1 s=0

By taking into account this fact as well as the definition of the norm J - Jfo, we can
easily see that it is enough to show that the set

(Moz)(t) = (Mpz)(0) = for —r <t <0.

(Moz)(t)
t+1

Is relatively compact in the Banach space BC([0, o), R). Every function z in X,
is such that (4.9) holds, where the nonnegative real constant Qo is defined by (4.8)
(and it is independent of z). Thus, the set Up is uniformly bounded. Furthermore,
let  be an arbitrary function in Xo. Then, from (4.3) we obtain for ¢ > 0

b= {u : There exists z € X such that u(t) = fort > 0}

(Mozx)(t) . §t+n—ft°°(sft)fg(s,:cs)ds ¢
t+1 a t+1
_ == 7 (s = t)fo(s, 2,)ds]
B t+1
- |—€+7l+ [7(s —t) | fols,zs)| ds
B t+1 ’
Hence, in view of (4.4), it holds
(410) ’(MOI)(t) _ ‘ < I_E+7ﬂ+fg (S_t)FO(S;75)dS fOI‘t?_O.

t+1 - t+1
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It follows, in particular, from (4.1) that

o0
(4.11) f Fo(t, v )dt < 0.
a
We get
—E£4nl+ [(s—t)Fp(s,v,)ds . 20 !
Jim! £+l fzt(il VEo(s, vs)ds Jim [|—§+n!+/ (s—t)FD(s,%)ds]
o0 —00 t

= Jin |- [ Falorras]
and, consequently, by virtue of (4.11), we find

=€+ nl+ [ (s = t)Fo(s, vs)ds
m

(4.12) li =0,
t—00 t41
Inequality (4.10) together with (4.12) implies
M,
gy SO,
t—oo t+4+1

By using again (4.10) and (4.12), we can easily conclude that Uy is equiconvergent
at co. Now, let again x be an arbitrary function in Xo. From (4.3) we derive for
every t > 0

‘ [——(ﬂff)l(t)] l B (t+1 vz It +1)(Moz)'(£) — (Moz)(0)

|(t + 1) (Moz)'(t) — (Moz)(2)]
= ‘(ﬁ+1) [§+/t fo{s,xg)ds]

IA

~Jern- [T -0z

= ’&—7‘,f+/1 fg(s,:cs)der/too sfo(s,zs)ds

IA

|E-?7i+/; |fo(s,x5)|ds+ft s|fols,zs)| ds

IA

co o
e=nl+ [ lols.zllds+ [ slfals, ) ds.
0 0
So, because of (4.4), we have

]

(4.13) e

<O foreveryt >0,

where - -
O=lc=nl+ [ Folsnds+ [ sFuls)ds
0 0

In view of (4.1) and (4.11), © is a nonnegative real number. By taking into account
(4.13) and applying the mean value theorem, we find

'(Mox)(fl) _ (Moz)(t2)
t1+1 to+1

<Oty —ts] forevery ty >0, t2 > 0.
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Since the last inequality is fulfilled for all functions z in Xy (and © is independent
of z), we immediately see that Up is equicontinuous. By the given compactness
criterion, Up is relatively compact in BC ([0, o0}, R). So, the relative compactness
of MpXp has been proved.

Next, we shall prove that the mapping My is continuous. Let z be an arbitrary
function in X and (:1:[”])11>1 be any sequence of functions in Xy with

K to —,,ILHS‘OZ[V] =i,
It is not difficult to verify that
-l — Ulingozgy] =uz; foreveryt>0.
Moreover, (4.4) guarantees that
ffo(t,zgv])| < Fy(t,v;) foreveryt>0 and forall v >1.

5o, by taking into account (4.1) and (4.11), we can apply the Lebesgue dominated
convergence theorem to obtain, for ¢ > 0,

lim /W(s—t)fo(s,xgvl)ds=fm(s—t}fo(s,xs)ds.

V—0o0

Thus, from (4.3) it follows that
lim (Moz)(t) = (Mpz)(t) fort > —r.

Y00
Since Mo Xy is relatively compact and the }f - Jfo —convergence implies the pointwise
convergence to the same limit function, we can follow the same procedure as in
the proof of Proposition 1 to conclude that the above convergence is also } - Jfo
—convergence, i.e. to conclude that

K Ko — lim Moz = Myz.
V—0o0

This shows that My is continuous.
The proof of the proposition is now complete.

Now, we proceed to the proof of Theorem 2.

Proof of Theorem 2. Consider the set Xy defined by (4.2). It is clear that
Xo is o nonemply conver and closed subset of Sy. It follows, in particular, from
the hypothesis (2.11) that (4.1) holds. Hence, Proposition 2 guarantees that the
formula (4.3) makes sense for any function z in X, and this formula defines a
continuous mapping My of Xy into Sy such that MyX, is relatively compact. We
will show that My is a mapping of Xg into itself, i.e. that MyXy C Xy. For this
purpose, let us consider an arbitrary function z in Xy. Then (4.9) is satisfied, where
the nonnegative real number Qg is defined by (4.8). Assumption (2.11) ensures that
Qo < ¢ So, (4.9) gives

|(Moz)(¢)]
t4+1

In particular, (4.14) guarantees that |(Mpz)(0)| < c. But, from (4.3) it follows that

Moy is constant on the interval [—r, 0]. So, we always have

(4.15) [(Moz)(t)] <e for —r <t <0.

(4.14) <c¢ forevery t >0.
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Inequalities (4.14) and (4.15) give }f Moz o< ¢, which means that Myz belongs to
Xp. So, we have proved that Mpyz € Xy for every function = in Xy, which ensures
that MOXD Q X().
Now, by applying the Schauder theorem, we conclude that there exists at least

one z in Xg with £ = Mpz, i.e.

n— [y sfo(s,zs)ds for —r <t <0
(4.16) z(t)=

E+n— [7(s—t)fols,zs)ds fort > 0.
We immediately obtain

z'(t) = —fo(t,z) fort >0

and consequently x is a solution on [0, co) of the delay differential equation (Ep).
Since x € Xp, (4.7) is true and so
o0
lim (s —t)fols,zs)ds =0 = hm / Jols,zs5)d

t—o00 t

By taking into account this fact, we can use (4.16) to see that the solution x is such
that (2.5) and (2.6) hold. Next, we observe that (2.7) is an immediate consequence
of (4.16). Furthermore, by taking into account (4.4), from (4.16) we get for t > 0

j2(t) — (et +7)| = {— ftm(s—t)fo(&rs)ds </ " (o = 1) lfole, 7)) d

IA

o0 o0
/ (s — €)Fi(3, s )ds < / oo, )
t 0

So, because of (2.11), it holds
(4.17) lz(t) — (&t + )| < ¢ —max{|¢],|n|} for every t > 0.
Moreover, (4.16) gives, for t > 0,

/ fols,zs)ds

Therefore, by (4.4), we have

|z (t) -

_ft Jfo(s,zs)mssfo \fols, z2)] ds.

(4.18) lz'(t) — €| < / Fo(s,vs)ds for every t > 0.
0

Note that, because of (4.11), [;* Fo(s,vs)ds is finite. Finally, we see that (4.17)
and (4.18) coincide with (2.12) and (2.13), respectively.
The proof of the theorem is complete.

5. PROOFS OF THEOREMS 3 AND 4

In order to prove Theorems 3 and 4, we will make use of the well-known Banach’s
Contraction Principle (see, e.g., Kartsatos [7]).

The Banach Contraction Principle. Let P be a Banach space and Y any
nonempty closed subset of P. If N is a coniraction of Y into itself, then the
mapping N has exactly one fired point (i.e. there erists a unique y € Y with

y = Ny).
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The following lemma provides a useful integral representation of Problem (D),
(2.5), (2.6) (where £ and 7 are given real constants), which will be used in proving
Theorem 3.

Lemma 1. Let £ and 5 be given real constants. A real-valued function z, which
is continuously differentiable on the interval [0,00), is a solution on [0,00) of the
ordinary differential equation (D) such that (2.5) and (2.6) hold, if and only if it
satisfies

(5.1) z(t) =&t +n— /too(s —t)h(s,z(s),z'(8))ds fort>0.

A particular case of Lemma 1 is Lemma 2 below concerning Problem (Dy), (2.5),
(2.6); Lemma 2 will be used in the proof of Theorem 4.

Lemma 2. Let £ and 0 be given real constants. A function = in C([0,c0), R)
is a solution on [0,00) of the ordinary differential equation (Do) such that (2.5)
and (2.6) hold, if and only if it satisfies

(5.2) z(t) =Et+n— foo(s —t)ho(s,z(s))ds fort > 0.

Proof of Lemma 1. Let x be a real-valued function, which is continuously
differentiable on the interval [0, co).
Assume first that z satisfies (5.1). Then

lim [z(t) — (St +7n)] = —tlim /Oo(s —t)h(s, z(s), x’(s)')ds =0

t—oo

and so (2.5) holds true. Also, we immediately obtain
(s3]
& ()= f—i—/ h(s,z(s),z'(s))ds for every t > 0,
t
which gives
lim [z'(t) — £] = lim f h(s,z(s),z'(s))ds = 0,
t—oo t—oo t
i.e. (2.6) is fulfilled. Moreover, we have
z"(t) = —h(t,z(t),z'(t)) forallt>0,

which means that z is a solution on [0, 00) of (D).
Conversely, let us suppose that z is a solution on [0, 00) of (D) such that (2.5)
and (2.6) hold. Then from (D) it follows that

T
() —2'(t) = —f h(s,z(s),z'(s))ds forall T,t withT >¢ > 0.
t
Consequently,

lim z/(T) —z'(t) = _f h(s,z(s),z'(s))ds for every t > 0.
t

T—o00
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But, in view of (2.6), we have Tlim z'(T") = &. Thus,
—00

'(t) =&+ /00 h(s,z(s),z'(s))ds fort>0.
i
This gives
T peo
2(T) — 2(8) = £(T — t) +/t f h{oa(o), 2o))dods Tor T2 0,

which can equivalently be written as

f & oa
[2(T) — (6T + )] — [2(t) — (¢ +7)] = f f h(,2(c), 2'(0))dods
forT >t >0.

Hence,
Jim o) = €7+ )] - w(®) = @+l = [ [ hor2(0),a'(0))dods

_ / " (s — t)h(s, a(s), o'(s))ds for ¢ > 0.

But, because of (2.5), it holds T}im [z(T) — (€T + n)] = 0. Therefore,

—z(t) + (&t + 1) = /tm(s —t)h(s,z(s),z'(s))ds forallt >0,

i.e. x satisfies (5.1).
The proof of the lemma has been finished.

Now, we are in a position to present the proofs of Theorems 3 and 4.

Proof of Theorem 3. Let P be the set of all real-valued functions on the interval
[0, o), which have bounded continuous derivatives on [0, oo). This set is a Banach
space endowed with the norm ||-||* defined by

lul|* = max{]u(0}|, sup |u’(t)|} for u € P.
t>0

Let also Y be the nonempty closed subset of P defined by

¥ ={zel: lz" £}
Clearly, Y is the subset of P consisting of all functions z in P which satisfy (2.24)
and (2.25). _

Consider now an arbitrary function z in Y. Then z satisfies (2.24) and (2.25),
which imply (2.28). By using (2.25) and (2.28) as well as the hypothesis (A), we
obtain

H(t, |z(t)], |='(t)])) < H(t,e(t+1),¢) fort>0.
On the other hand, the assumption (2.16) guarantees that

Ih(t, 2(8), 5/ ()] < Ht, lo(@)], |5/ () for ¢ > 0.
Thus, we have
(5:3) |h(t, z(t), 2" (£))| < H(t,c(t +1),¢c) forallt > 0.
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Furthermore, we observe that the hypothesis (2.17) ensures, in particular, that
fDm tH(t,e(t +1),c)dt < oo

and consequently, by taking into account (5.3), we obtain
/'w tA(t, 2(t), /()| dt < oo.

So, '

(e o]

/ th(t,z(t), z'(t))d¢t and, in particular, / h(t,z(¢),2'(t))dt  exist in R.
0 0
This is true for all functions z in Y. Hence, the formula

(Nz)(t) =&t +n— /tm(s —t)h(s,z(s),2'(s))ds fort>0

makes sense for any function z in Y, and this formula defines a mapping N of YV’
into C([0,00),R). We will show that N is a mapping of Y into itself, i.e. that
NY C Y. To this end, let us consider an arbitrary function z in Y. Then, by
taking into account (5.3), we obtain

o) = |n- [ " sh(s,2(s), %' (s))ds

< ] £ ]0 ” (s, 2(s), 2'(s))] ds

< 77|+]0003H(3,c(s+1),c)d3

and consequently, in view of (2.17), it holds
(5.4) |(Nz)(0)] <.

Furthermore, by taking again into account (5.3), we derive for ¢ > 0

(NzY(t) —¢] = j [wh(s,z(s>,z'<s)>ds < ftm;h(s,z(s),zf(s)ws

< [ Hescls+1),0d5 < | Hscls-+ 1),

and so, because of (2.18), we have

(5.5) [(Nz)'(t) —&| <c—|¢| forallt>0.
It follows from (5.5) that
(5.6) [(Nz)'(t)] < ¢ for every t > 0.

Inequalities (5.4) and (5.6) mean that Nz belongs to Y. It has been verified that,
for each z € Y, Nz belongs to Y. Thus, we always have NY C Y.
Now, let © be an arbitrary function in P. Then

G) [u(0)] < [lul”
and
(5.8) ()] < |lull* for every ¢t > 0.

Furthermore, by using (5.7) and (5.8), we can immediately see that v is also such
that

(5.9) lu(®)] < [|lul|” (¢ +1) for every t > 0.
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Next, let us consider two arbitrary functions z and y in Y. Then, by using the
assumption (2.22) and taking into account (5.9) and (5.8), we obtain

|(Nz)(0) — (Ny)(0)] —/Om s [h(s, z(s), 2'(s)) — his,y(s),y/ (s))] ds

< [ s Ihs,m(6),2(6)) — hs, (e, (5)) ds
0
< f sL(s) max {|z(s) — y(s)|, |2'(s) — v/ (s)[} ds
< [ stlsymax {le = ol (s + 1), Jo — "} ds
0
= [/o sL(s)max {s + 1, l}dsJ lz -yl
That is,
(5.10)  |(N2)(0) = (Ny)(O)] < [ [ sts+ 1)L(s)ds] T

Furthermore, by using again (2.22) and taking again into account (5.9) and (5.8),
we get for ¢t > 0

[(Nz)'(t) = (Ny)' ()] =

/ "~ [, 2(2),2(5)) — h(s, u(s), ' (s))] ds
/ " Ih(e, 2(s), 2'(s)) — h(e, u(s), ¥ (a))] ds
/ " Ih(s2(s), 2'()) — ks, y(s) ¥/ () ds

[e.e]

IA IA

I A

A
e &

L(s) max {|z(s) — y(s)] . [&'(s) — v/ (s)]} ds

L(s)max { ||z —yll" (s + 1), = — yl|"} ds

[waL Jmax {s+1, 1}ds] lz —y|I*

|

/000 (s +1)L(s) ds] lz —ull™.

Thus, we find
B11) s VY0~ (V) @)] < | [ 6+ DL -l
Set

f = max {j:o s(s 4+ 1)L(s)ds, /Ooo(s + I)L(s)ds} .
Then (5.10) and (5.11) give
Nz — Ny||" < 8|z - y||".

This inequality holds true for all functions z and y in Y. On the other hand, from
the hypothesis (2.23) it follows that 0 < @ < 1. We have thus proved that the
mapping M :' Y — Y is a contraction.
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Finally, by using the Banach Contraction Principle, we conclude that there exists
exactly one function x in ¥ with £ = Nz. We see that = Nz is equivalent to the
fact that z satisfies (5.1). Hence, by Lemma 1, the ordinary differential equation
(D) has exactly one solution z on the interval [0, co) satisfying (2.24) and (2.25),
and such that (2.5) and (2.6) hold. It remains to establish that this unique solution
x satisfies (2.8) and (2.9). By taking into account (5.3), from (5.1) we obtain for
t>0

() — (&t + )

= 1~ [m(s — t)h(s,z(s),z'(s))ds| < /ﬂm(s —t) |h(s, z(s),z'(s))| ds

< /w(s—t)h’(s, e(s+1),c)ds < '/OO sH(s,c(s+1),c)ds.

So, by using (2.17), we immediately arrive at (3.20). Moreover, as z = Nz, it
follows from (5.5) that z satisfies (3.21). We see that (3.20) and (3.21) coincide
with (2.8) and (2.9), respectively.

The proof of the theorem is complete.

Proof of Theorem 4. Consider the set Py of all continuous real-valued functions
u on the interval [0, co) with u(t) = O(t) for t — co. The set Py is a Banach space
endowed with the norm ||-||5 defined by

Jully = sup &)
t>0t+1

Consider also the set ¥ defined by
Yo={z€P: |zlg<c}.

It is clear that Y} is the subset of Py consisting of all functions z in P, which satisfy
(2.28). The set Yy is a nonempty closed subset of Py.

Now, let z be an arbitrary function in ¥p. Then z satisfies (2.28). By taking
into account (2.28) and using the assumption (Ap), we get

Ho(t, |z(t)]) < Ho(t,e(t +1)) fort>0.
But, from the hypothesis (2.19) it follows that
lho(t, z(8))| < Ho(t, |z(t)]) fort>0.
By combining the last two inequalities, we obtain
(5.12) |ho(t, z(t))| < Ho(t,c(t+1)) forallt>0.

Next, we see that (2.20) implies, in particular,

for u € Fp.

[eo)
f tHo(t, c(t + 1))dt < oco.
0

Thus, because of (5.12), we have

/wtlho(t,a:(t))ldt < 0,

which guarantees that
oo o0
/ tho(t,z(t))dt and, in particular, / ho(t,z(t))dt  exist in R.
0 0
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So, as the function z in Y is arbitrary, we immediately see that the formula

(Noz)(t) = €t + 1 — ];m(s —t)ha(s,z(s))ds fort >0

makes sense for any function = in Yp, and this formula defines a mapping Ny of
Y, into C([0, c0), R). Furthermore, Ny is a mapping of Yy into itself, i.e. it holds
NoYp € Yp. Indeed, by using (5.12) and the hypothesis (2.20), for any function z
in Yy, we obtain, for every t > 0,

I |- o [ (o s (o
< B [T lho(s,z(on)ds
< max{lg I} + [ (s —t) s, ()l ds
< max{fel ful} + [ (s = )Hofs, cls + 1))ds
< max{lel, o) + [ sHols,cls + 1)ds
z

That is, for any = € Yy, Nox belongs to Yp. This proves our assertion.
Furthermore, let z and y be two arbitrary functions in ¥p. Then, by using the
hypothesis (2.26), we get for t > 0

‘(Nox)(?;iNoy)(tH _ ti : ) S “t [hO s, JS(S)) ho(S,y(S))] dis
< = 1ftm (s =) lho(s, 2(s)) — ho(s, y(s))] ds
< t+1/ (s — ) Lo(s) |e(s) — y(s)| ds
- [ (s =)o+ 1)Lofs )——-——lx(s);f(s)ids
[t -II- 7 / s—t)(s+ I)Lo(s)ds] il;g&i—?is—)l
Consequently,
[(Noz) () — (Noy)(2)] 1 lz(s) — y(s)|
tgg T < [t:-lgt-"_l (s —t)(s+ 1)L0(s)ds] s;gl[))—u—*s i
_ « |[z(s) — y(s)|
= [fo s(s+ l)Lo(s)ds] iglgs—-i-l—
That is,
(5.13) INoz — Noyllp < 6o llz — wll5,
where

o = /0‘00 s(s + 1) Lo(s)ds.
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Because of the assumption (2.27), we have 0 < 6 < 1. As (5.13) holds true for
all functions = and y in Yy, we conclude that the mapping Ny : Yo — Yy is a
contraction.

By the Banach Contraction Principle, there exists exactly one function z in ¥
with x = Ngz. Clearly, x = Nyz is equivalent to (5.2). So, from Lemma 2 it
follows that the ordinary differential equation (Dp) has exactly one solution z on
the interval [0, co) satisfying (2.28), and such that (2.5) and (2.6) hold. Finally, we
will show that this unique solution z satisfies also (2.12) and (2.21). By taking into
account (5.12), from (5.2) we obtain for ¢ > 0

2(t) — (&t +m)] = {— / " e~ Dhctm ey

</ " (s = ) |ho(s, a(s))] ds

IA

ftm(s —t)Ho(s,c(s + 1))ds < /00 sHo(s, (s +1))ds.

0

Thus, by using (2.20), we arrive at (4.17). Furthermore, it follows from (5.2) that,
fort >0,

/(£ — €] =

/tmho(s,x(s))ds < -/too [ho(s, z(s))| ds < /Ooo |ho(s, z(s))| ds

and consequently, in view of (5.12), we obtain

(5.14) |z (t) — €] < fo Hy(s,c(s +1))ds for every t > 0.

We notice that, because of (2.20), [;° Ho(s, c(s + 1))ds is finite. We immediately
observe that (4.17) and (5.14) coincide with (2.12) and (2.21), respectively.
So, the proof of the theorem has been completed.

6. APPLICATION TO DIFFERENTIAL EQUATIONS OF
EMDEN-FOWLER TYPE. EXAMPLES

Consider the second order nonlinear delay differential equations of Emden-Fowler
type

(6.1) 2" (t) + a(t) |z(t — r)|* sgnz(t — r) + b(t) |2’ (2)|° sgna’(t) = 0

and

(6.2) z"(t) + a(t) |z(t —r)|* sgnz(t —r) =0

as well as the second order nonlinear ordinary Emden-Fowler differential equations
(6.3) z(t) + a(t) |x(t)|” sgnz(t) + b(t) i:c’(t)[ﬁ sgnz'(t) =0

and

(6.4) z"(t) + a(t) |z(t)|* sgnz(t) = 0,

where a and b are continuous real-valued functions on the interval [0, 0), and o
and B are positive real numbers. Consider also the second order linear ordinary
differential equations

(6.5) z''(t) + a(t)z(t) + b(t)z'(t) =0
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and
(6.6) z'"(t) + a(t)z(t) = 0.

By applying Theorem 1 (or, especially, Corollary 1) and Theorem 2 (or, espe-
cially, Corollary 2) to the delay differential equations (6.1) and (6.2), respectivelly,
we are led to the following two results:

Result 1. Let £ and 1 be given real constants, and let there exist a real number
c with ¢ > max{|¢|,|n|} so that

6.7) [/Tt|a(t)|dt+/mt(t—r+l)°‘a(t)|dt] +cﬂfmt1b(t)|dzgc_m|
0 T 0

and

(6.8) ¢~ UO |a(t)|dt+/m(t—r+1)a Ia(t)!dt] +cﬁ/0m [b(t)| dt < c— ¢

Then the delay differential equation (6.1) has at least one solution = on the interval
[0,00) such that (2.5) and (2.6) hold; in addition, this solution x satisfies (2.7),
(2.8), and (2.9).

Result 2. Let £ and n be given real constants, and let there exist a real number
¢ with ¢ > max{|¢],|n|} so that

(6.9) c® [/Drt la(t)| dt + /00 t(t—r+ 1) |a(t) dt] < c—max{|¢], ||}

Then the delay differential equation (6.2) has at least one solution x on the interval
[0,00) such that (2.5) and (2.6) hold; in addition, this solution x satisfies (2.7),
(2.12), and

£—c” ['[OT la(s)| ds + /;oo(s —r+4+1)%|a(s)| ds} < wift)

<E4c” [f la(s)| ds +/ (s —r+1)*|a(s)| ds] for every ¢t = 0.
0 T
(Note that, because of (6.9), frw(s —r+1)%|a(s)| ds is finite.)

Also, an application of Theorem 1 (or, especially, of Corollary 3) and of Theorem
2 (or, especially, of Corollary 4) to the ordinary differential equations (6.3) and (6.4),
respectivelly, leads to the next two results:

Result 3. Let € and n be given real constants, and let there exist a real number
c with ¢ > max{|¢|, |n|} so that

(6.10) c"/mt(t+1)“|a(t)|dt +cﬁf°°tb(t)|dtgc—m;
0 0

and

(6.11) cﬂfo (t+1)°‘|a(t)[dt+cﬁfo b(t)|dt < c — |¢].

Then the ordinary differential equation (6.3) has at least one solution x on the
interval [0,00) such that (2.5) end (2.6) hold; in addition, this solution z satisfies
(2.8) and (2.9).
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Result 4. Let £ and n be given real constants, and let there exist a real number
¢ with ¢ > max{|¢|, ||} so that

(6.12) co‘/o‘mt(t+1)"1a(t)|dtSc—max{[g],lnl}.

Then the ordinary differential equation (6.4) has at least one solution z on the
interval [0, 00) such that (2.5) and (2.6) hold; in addition, this solution z satisfies
(2.12) and

o0 o0

e-e [ rla@lds <o <6+e [ (s+1)7als) ds
0 0
for every t > 0.

(Note that, because of (6.12), [°(s-+1)*|a(s)| ds is finite.)

Moreover, if we apply Theorem 3 and Theorem 4 to the linear ordinary differ-
ential equations (6.5) and (6.6), respectivelly, then we can arrive at the following
two results:

Result 5. Assume that
(6.13) max{fo t(t 4+ 1) [la(t)] + |b(t)]] dt, ]0 (t+1)[|lal(t)] + |b(2)]] dt} < 1.

Let € and n be given real constants, and let there exist a real number ¢ with ¢ >
max{|¢|, |n|} so that

(6.14) c[/ooot(t—f—l) |a(t)dt+/0wtb(t)1dt] < el
and
(6.15) CUD (t+1)|a(t)|dt+/0 |b(t)|dtJ <o [¢].

Then the linear ordinary differential equation (6.5) has exactly one solution = on
the interval [0, c0) satisfying (2.24) and (2.25), and such that (2.5) and (2.6) hold;
in addition, this unique solution x satisfies (2.8) and (2.9).

Result 6. Assume that
o0
(6.16) / £t + 1) Ja(t)| dt < 1.
0

Let £ and 7 be given real constants, and let there exist a real number c with ¢ >
max{||, |n|} so that

(6.17) c-/ooo t(t+1)|a(t)| dt < c— max{|¢|, |n|}.

Then the linear ordinary differential equation (6.6) has exactly one solution = on
the interval [0, o) satisfying (2.28), and such that (2.5) and (2.6) hold; in addition,
this unique solution = satisfies (2.12) and

L cfm(s+ D]a(s)ds < 2'(t) < §+c/m(s+1) la(s)|ds  for every t > 0.
0 0

(Note that, because of (6.17), [7°(s + 1) |a(s)| ds is finite.)
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Note: Provided that at least one of £ and  is nonzero, the assumption (6.17)
implies the hypothesis (6.16).

Now, we will give some examples to demonstrate the applicability of our results.

Example 1. Consider the delay differential equation (6.1) with r =1, a =2
B =1, and

3

8 1
t) = ————— fort> b(t) = ——mm—
o) = iy Prtz0 =g

Take £ = -g— and n = 1. Inequality (6.7) becomes
1 o0 fete]
; 8 / s 8 / 1
t———dt 1t t—————dt < ec—1
¢ UD e ), Vagros¥ te), Bsprmp¥seTh

1
(6.18) §c2+%c5c—1.

We immediately see that (6.18) holds if and only if

fort > 0.

ie.

(6.19) ‘ g <c<6.

Furthermore, Inequality (6.8) is written as

1 oo [o%e]
8 8 1 5
2 - . f 2 ° f A T
¢ UO TICE SV ST -t e s 3E+1p3 =T §

ie.

1 1 5
e ~?+-c<ec— =,
(6.20) 5¢ tgese—¢

We observe that (6.20) is satisfied if and only if
15 — /105 154 /105

6.21 —_ <<
(6.21) g == g
Since
15 — +/105 1
1B B g WAV

both (6.19) and (6.21) are fulfilled if and only if c satisfies (6.19). That is, both
Inequalities (6.7) and (6.8) hold if and only if ¢ is such that (6.19) is satisfied. Thus,
if we choose ¢ = %, then Result 1 leads to the following result:

The delay differential equation

' (t) + m%f)g [z(t — 1) sgnz(t — 1) + mr’(i) =0
has at least one solution x on the interval [0, c0) such that
(6.22) &) = gt +1+40(1) fort— co
and
(6.23) ity = g +o0(1) fort— oo;

in addition, this solution x satisfies )
(6.24) z(t) =z(0) for —1<t<0,
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5 il 5 3
6.25 ~t4+ =< < =i+ = t>
( ) 6+2_${t)_6+2 for every t >0
and
(6.26) % < uiffl = g for every t > 0.

Example 2. Consider the delay differential equation (6.2) with r = 1, o = 2,

and
16

1) = —m—
alt) 35(t 4+ 1)5
Take ¢ = & and n = 1. Inequality (6.9) is written

1 [o%)
. 16 . 18 6
= t—————— P ————dt| < c— =
C[ﬁ 3ar+n¥“+£ B/Er1p =75

2 5 6
e ===y
We immediately see that (6.27) is satisfied if and only if (6.19) holds. That is,
Inequality (6.9) holds true if and only if ¢ satisfies (6.19). Choose ¢ = % Then, by
applying Result 2, we arrive at the next result:

The delay differential equation

for t > 0.

l.e.

(6.27)

" 16 _ 2 . _
z''(t) + BE 1) [2(t—1)]"sgnz(t—1) =0
has at least one solution = on the interval [0, 00) such that
(6.28) F(t)= gt+ 1+0(1) fort—co
and
(6.29) () = g +o(1) for t— oo;
in addition, this solution x satisfies (6.24) and:
6 7 6 13
, —t+ — < x(t) < =t + = >
(6.30) 5t+10ﬁ:c(t)_5t+10 for every t > 0
and
(6.31) - 2l S 2 for every t > 0
: T S5 foreveryt>0.

Example 3. Let us consider the ordinary differential equation (6.3) with o = 2,
B =1, and
2 1
)= ————= fort>0, blt)=-—-—-
olt) = gerap Prtz =357 19
5

Let us take £ = g and 1 = 1. Then, Inequality (6.10) becomes

éjmt - ﬁ+c/mt . dt < 1
o 9(t+1)3 T

fort > 0.
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which leads to (6.18). Also, Inequality (6.11) is written as

CZ/OOu—zr——mdtJrc/‘oo—1——dt<c—§
o 9(t+1)3 5 BEFIE - &
which is equivalent to (6.20). As in Example 1, we see that both (6.18) and (6.20)
are satisfied if and only if (6.19) holds. So, both Inequalities (6.10) and (6.11) hold
if and only if ¢ satisfies (6.19). Thus, by applying Result 3 with ¢ = %, we are led
to the following result:

The ordinary differential equation

P 5 1
[z (t t) + e (t) =

+- TOEYE [z(t)]” sgnz(t) + 3(t+1)3$ (t)=0

has at least one solution x on the interval [0, 00) such that (6.22) and (6.23) hold,;

in addition, this solution x satisfies (6.25) and (6.26).

x.ﬂ'(t)

Example 4. Let us consider the ordinary differential equation (6.4) with o« = 2

and
4

t)=———— fort>0.

o) = ey Ttz
Let us take £ = g and n = 1. In this case, Inequality (6.12) is written as follows

0 o0 4 6

2 et e
c fo BEripdEcT R
which is equivalent to (6.27). But, (6.27) holds if and only if ¢ satisfies (6.19).
That is, Inequality (6.12) is fulfilled if and only if ¢ is such that (6.19) holds. So,
an application of Result 4 with ¢ = % leads to the next result:

The ordinary differential equation

z''(t) + E [z(2))® sgnz(t) = 0

4
15(t + 1
has at least one solution x on the interval [0, c0) such that (6.28) and (6.29) hold;
in addition, this solution x satisfies (6.30) and (6.31).

Example 5. Consider the linear ordinary differential equation (6.5) with

a(t) = b(t) = m Rt il

= 1 . 1
hﬁ (t+1)° ﬁ (t+1)°

g
and hence (6.13) is always satisfied. Now, take £ = 3 and 7 = 1. Inequality (6.14)

becomes
5e 1 20 1
t—-—dt+/ t—————dt| <c—1,
‘{ﬁ 2+ 12T 2@+n4]~c

1
gcgc—l or c=>

We find

ie

Do

Moreover, Inequality (6.15) is written as

= foo—l—dt+/m;dt <c—§
o 2(t+1)3 o 20+1)47) 7 6
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ie
< or = -
12°=°7% =T
Thus, both Inequalities (6.14) and (6.15) are satisfied if and only if ¢ > 2. So, by

applying Result 5 with ¢ = %, we are immediately led to the following result:

The linear ordinary differential equation

.?3”(?:) -+ 5(‘1%'—]'-*)2.’.8('6) + E(%i)—‘lmf(t) =0

has exactly one solution x on the interval [0, c0) satisfying

lz(0)] <

[SeN L]

and
|z'(t)] <

and such that (6.22) and (6.23) hol
(6.25) and (6.26).

for every t > 0,

2. po| W

i in addition, this unique solution x satisfies

Example 6. Consider the linear ordinary differential equation (6.6) with

a(t)

2 fort >0
= —-— T .
5(¢+ 1)4 =

i
R, | R
/0 5(t+1)3 5’

we see that (6.16) is always satisfied. Now, take £ = g and n = 1. Inequality (6.17)
is written as
i 2 6
t————=dt < c— -
Cfo 5+ 1) =CT 5

1

gc <c— 5 or c=>
So, Inequality (6.17) holds true if and only if ¢ > % Hence, an application of Result
6 with ¢ = % gives the next result:

The linear ordinary differential equation
2
")+ o——=x(t) =0
=0+ serpee®

has exactly one solution x on the interval [0, c0) satisfying

Since

ie

ro| Lo

3
lz(t)] < 5(15 +1) foreveryt >0,

and such that (6.28) and (6.29) hold; in addition, this unique solution z satisfies
(6.30) and (6.31).

Finally, we give an example related to our comment at the end of Section 2.

Example 7. Consider the linear ordinary differential equation
e—Bt+1

t+1

(6.32) z''(t) + 21} =0
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This equation is of the form (6.4) with @ = 1 and

e—6t+1
a(t) = for t > 0.
t+1
Take £ = 1—70 and n = %, and choose ¢ = 1. Then, Inequality (6.12) becomes
o0 1 e 1
AL e s B
ejo ¢ tE1p M 310

Thus, (6.12) holds true. Consequently, Result 4 guarantees the following:

The linear ordinery differential equation (6.32) has ot least one solution = on
the interval [0, c) such that
7 9
=—tt— +o(l
z(t) T +10+o() for t — oo
and "
z'(f) = T +o0(1) for t— oo;

i addition, this solution x setisfies

7 4 7
—— - < < —t+1 >
10t+5_z(t)_ 0 +1 foreveryt>0
and . .
e e
o wa O R s e > 0.
10 6_m()_10+6 for every t =0

Now, we observe that Equation (6.32) can also be obtained from (6.3) by taking
o= =1, and
e—6t+1
t) =
i) =377

Again, we take £ = -17—0 and 7 = 19—0, and we choose ¢ = 1. Then, Inequality (6.11) is
written

fort >0, b(t)=0 fort>0.

e 3 e 3
—6t ¥
dt < — e =< —.
6/08 =175¢ "™ 5510
So, (6.11) fails to hold. Thus, Result 3 is not applicable. Consequently, the above
result for the linear ordinary differential equation (6.32) cannot be obtained from
Result 3.

7. SOME SUPPLEMENTARY RESULTS

The results of this section are formulated as two theorems (Theorems I and
IT) and two corollaries (Corollaries I and II). Corollaries I and II are immediate
consequences of Theorems I and II, respectively. Theorem I and Corollary I concern
the delay differential equation (E), while Theorem II and Corollary II are dealing
with the delay differential equation (Eg). It must be noted that Theorem I and
Corollary I can be applied, in particular, to the delay differential equation (E')
and, especially, to the ordinary differential equation (D); analogously, Theorem
IT and Corollary II are applicable to the particular case of the delay differential
equation (Ej) as well as to the special case of the ordinary differential equation
(Dg). These applications are left to the reader.
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Theorem I. Assume that (2.1) holds, where F is a nonnegative real-valued
function defined on [0, c00)xC ([—r,0],[0,00))%[0, o0), which satisfies the Continuity
Condition (C). Suppose that (B) is satisfied.

Let c be a given positive real number such that (3.1) holds, where the function
in C([—r,00),[0,00)) depends on ¢ and is defined by (2.4). Then every solution z
on the interval [0,00) of the delay differential equation (E) with

7.l ! £
@y mae{_mzx ()], supla/)] | <

satisfies (2.5) and (2.6), where the real constants & and 1 depend on the solution T
and are defined as follows:

(7.2) E=2'(0) — /OOO Flt oo, (1))t
and .
(7.3) n = xz(0) —F—/D tf(t, e, 2/ (8))dt.

Corollary I. Assume that (2.1) holds, where F is a nonnegative real-valued
function defined on [0, 00)xC ([—r, 0], [0, 00))x[0, 00), which satisfies the Continuity
Condition (C). Suppose that (B) is satisfied.

Assume that, for any positive real number ¢, (3.1) holds, where the function
in C ([-r,00),[0,c0)) depends on ¢ and is defined by (2.4). Then every solution
on the interval [0,00) of the delay differential equation (E) with bounded derivative
on [0,00) satisfies (2.5) and (2.6), where the real constants & and 1 depend on the
solution = and are defined by (7.2) and (7.3), respectively.

Theorem II. Assume that (2.10) holds, where Fy is a nonnegative real-valued
function defined on [0,c0) x C' ([—r, 0], [0,00)), which satisfies the Continuity Con-
dition (Cp). Suppose that (Bg) is satisfied.

Let ¢ be a given positive real number such that (4.1) holds, where the function
in C([-r,00),[0,00)) depends on ¢ and is defined by (2.4). Then every solution x
on the interval [0,00) of the delay differential equation (Eq) with

|z(2)]

: —_— <
(7.9 e {_m (6], w2} <.
satisfies (2.5) and (2.6), where the real constants & and 1 depend on the solution x
and are defined as follows:

(7.5) ¢=20)- [ ” folt, zo)dt
and
(7.6) = i) +fﬂ b lhanat

Corollary II. Assume that (2.10) holds, where Fy is a nonnegative real-valued
function defined on [0, 00) x C ([—r,0], [0,00)), which satisfies the Continuity Con-
dition (Co). Suppose that (Bg) is satisfied. '
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Assume that, for any positive real number c, (4.1) holds, where the function
in C ([—r,00),[0,00)) depends on c and is defined by (2.4). Then every solution x
on the interval [0, 00) of the delay differential equation (Eqo) with xz(t) = O(t) for
t — co satisfies (2.5) and (2.6), where the real constants & and 71 depend on the
solution = and are defined by (7.5) and (7.6), respectively.

Proof of Theorem 1. Let x be a solution on the interval [0,00) of the delay
differential equation (E) such that (7.1) is satisfied. It follows from (7.1) that z
satisfies (3.4) and (3.5). As in the proof of Proposition 1, we can arrive at (3.11),
which guarantees that (7.2) and (7.3) define two real constants £ and n, respectively,

depending on the solution z.
Now, from (E) it follows that

(7.7) z(t) = z(0) + tz'(0) — ft(t —8)f(s,zs,2'(s))ds for t > 0.
0

For every t > 0, we obtain

_ /t(t — 8)f(s, 25, '(s))ds
0

_ /t(t —8)d UDO f(a,:ng,:c’(cr))dcr]
—t/ i i) fU f(0,20,2 ))da]ds
—t/ Flot, Byt () da+f U o, & ))da]
*ft U f(cr,:ca,m’(a))dcr]ds

= —t fom f(8,z5,2'(8))ds + /000 sf(s,zs,2'(s))ds — /;00(3 —t)f(s,zs, ' (5))ds.

Thus, (7.7) gives
z(t) = z(0)+¢z'(0) —tfo fla,@e, @ (s))ds+/0 sf(s,zs,2'(5))ds
—/: (s —t)f(s,zs,7'(s))ds
= [a:’(()) - fom f(s, ws,x’(s))dsJ t+ [a:(U) + fom sf(s,zs,2'(s))ds
—ft (s —t)f(5,2s,2'(8))ds.

Hence, in view of (7.2) and (7.3), we have

Il

I

(7.8) z(t) =& +n— /;00(3 — )} f(s,zs,2'(s))ds fort > 0.

But, (3.11) ensures that

313& /w(s —t)f(s,zs,2'(5))ds = 0.
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So, it follows from (7.8) that the solution z satisfies (2.5). Furthermore, from (7.8)
we obtain

(7.9) 2t =f +/ f(s,z5,2'(s))ds for t > 0.
i
But, because of (3.11), it holds

oo
lim f f(s,zs,2'(8))ds = 0.
t—foo t
Thus, (7.9) implies that = satisfies (2.6).

The proof of the theorem has been completed.

Proof of Theorem II. Let x be a solution on the interval [0, oc) of the delay
differential equation (Eg), which satisfies (7.4). We immediately observe that (7.4)
guarantees that the solution z is such that (3.4) and (3.6) hold. As in the proof
of Proposition 2, we can conclude that (4.7) holds true and hence (7.5) and (7.6)
define two real constants & and 7, respectively, which depend on the solution z.

The rest of the proof of the theorem is similar with the corresponding part of
the proof of Theorem I, and will be omitted.

Before closing this section and ending the paper, we note that the problem of
giving sufficient conditions for every solution to be asymptotic at co to a line (de-
pending on the solution) has recently been investigated in [10], for second order
nonlinear ordinary differential equations. For the more general case of n-th order
(n > 1) nonlinear ordinary differential equations, conditions have been established
in [17,18], which guarantee that every solution is asymptotic at oo to a real poly-
nomial of degree at most n — 1 (depending on the solution).
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1 Preliminaries

Throughout this paper, K stands for a complete non-Archimedean valued field whose
valuation is non-trivial. By a seminorm, on a vector space E over K, we mean a
non-Archimedean seminorm. Also by a locally convex space we will mean a non-
Archimedean locally convex space over K (see [12] and [13]). For E a locally convex
space, we denote by cs(F) the collection of all continuous seminorms on E and by
E' the topological dual of E. For a zero-dimensional Hausdorff topological space X,
BoX is the Banachewski compactification of X, Cy(X) the space of all continuous
K-valued functions on X and C,.(X) the space of all f € C,(X) whose range is
relatively compact. Every f € Cp.(X) has a continuous extension f% to all of 3, X.
For f € KX and A C X, we define

[flla = sup{|f(2)| : z € A} and |Ifl|=Iflx.

By AP e will denote the closure of A in §,X.

Next we will recall the definition of the strict topology 8 on Cp(X) which was given
in [5]. Let Q be the family of all compact subsets of 8,X which are disjoint from
X. For Z € 9, let Cz be the set of all b € C,.(X) for which A% vanishes on Z.
We denote by 3z the locally convex topology on C,(X) generated by the seminorms
Ph, h € Cz, where px(f) = ||hf||. The inductive limit of the topologies 8z, Z € 1,
is the strict topology 8. As it is shown in [7], Theorem 2.2, an absolutely convex
subset W of Cy(X) is a Bz-neighborhood of zero iff, for each r > 0, there exist a

clopen subset A of X, with AP* disjoint from Z, and ¢ > 0 such that
{feC(X): Ifllage llfll <} W.

Monna and Springer initiated in [11] non-Archimedean integration. In [13] and [14],
van Rooij and Schikhof developed a non-Archimedean integration theory for scalar
valued measures. Some results on measures with values in Banach spaces were given
in [1], [2] and [3]. In this paper we will study measures with values in a locally convex
space as well as integrals of scalar valued functions with respect to such measures.

61
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2 Vector Measures

Let R be a separating algebra of subsets of a non-empty set X, i.e. R is a family of
subsets of X with the following properties :

1. XeRand,if A,BeR,then AUB, AN B, A\ B are also in R.

2. If z,y are distinct elements of X, then there exists a member of R containing
x but not y.

We will call the members of R measurable sets. Clearly R is a base for a Hausdorff
zero-dimensional topology 7= on X.

For a net (V5) of subsets of X we will write V5 | 0 if it is decreasing and [ Vs = 0.
Similarly we will write V;, | 0 for a sequence (V},) of sets which decreases to the
empty set.

Let now £ be a Hausdorff locally convex space. We denote by M (R, E) the space
of all bounded finitely-additive measures m : R — E. For m € M(R,E) and
p € cs(E), we define

mp: R —= R, my(A4) =sup{p(m(V)):V e R,V C A}
and ||m||, = mp(X). We also define
Nmp: X =R, Npyp(z)=inf{m,(V):z€V e R}.
An element m of M(R, E) is called :
1. o-additive if m(V,,) — 0 if V, | 0.
2. 7-additive if m(V;) — 0 if Vs | 0.

Let M,(R, E) (resp. M.(R,E)) be the space of all o-additive (resp. 7-additive)
members of M (R, E).

Theorem 2.1 Let m € M(R,E). Then
1. m is T-additive iff, for all p € cs(E), we have that my(Vs) — 0 when Vj | 0.
2. m is o-additive iff, for all p € cs(E), we have that m,(V;,) — 0 when V;, | 0.

Proof : (1). Clearly the condition is sufficient. Conversely, assume that m is 7-
additive but the condition is not satisfied. Then there exist a p € cs(E), an € > 0
and a net (V)sea of measurable sets which decreases to the empty set such that
mp(Vs) > € for all 6.

Claim : For each § € A, there exist v > § and a measurable set A such that
V, C A C Vs and p(m(A)) > e. Indeed, there exists B C V5 with p(m(B)) > e. For
each vy € A, set Zy = BNV, W, =V, \ Z,. Then W, | 0. Since m is T-additive,
there exists v > & such that p(m(W,)) < e. The sets B and W, are disjoint. If
A=W,UB, then V, C AC V; and

p(m(A)) = p(m(Wy) + m(B)) = p(m(B)) > ¢,
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which proves the claim.

Let now F be the family of all measurable sets A such that there are v > § with
V, € AC Vs and p(m(A)) > e. Since F | @, we arrived at a contradiction. This
proves (1).

(2). The proof is analogous to that of (1).

Theorem 2.2 Let m € M- (R, E) and let (V;);er be a family of measurable sets. If
p € cs(E), then for each measurable subset V' of |J;c; Vi, we have that

mp(V) < supmy (V).
2
Proof :  For each finite subset § of I, let Wg = J;cgVi. Then VO\W§ | 0. If

mp(V) > 0, there exists a finite subset S of I such that m,(VWE) < my(V).
Now

myp(V) = max{mp(VNWs), m,(VNWE)}
= mp(VNWg) < my(Wg) = measxmp(vi).

Corollary 2.3 Letm € M. (R,E), p <€ ¢cs(E) and V € R. Then
mp(V) = sup Nep(x).
zeV

Proof : Clearly my(V) > a = sup,cy Nmp(z). On the other hand, if € > 0, then
for each = € V there exists a measurable set V,, with z € V, C V, such that
mp(Vz) < Npp(z) +€ < a+e Since V = J, oy Vz, we have that

mp(V) < supmy,(V;) < a+e,
zeV

and the result follows as € > 0 was arbitrary.

Theorem 2.4 Let m € M,(R, E) and let (V},) be a sequence of measurable sets. If
V € R is contained in |JVy,, then my(V) < sup, mp(Vy).

Proof :  Let Wy, = |Ji-; Vk. Suppose that m,(V) > 0. Since VW< | 0, there
exists an n such that my(V N WE) < m,(V). Now

mp(V) = max{my,(VNWY), mx(VNW,)}
= mp(V N W) <mp(W,) = 1?55)(””7‘13(%:)-
Theorem 2.5 Ifm € M(R,E) and p € cs(E), then Ny, , is upper semicontinuous.

Proof : Leta>0and V = {& : Np,(z) < a}. Forz € V, there exists a measurable
set A containing x and such that m,(A) < . Now z € A C V and so V is open.

Theorem 2.6 Let m € M.(R,E), p € cs(E) and € > 0. Then the set
Xoe = {& 1 N plx) 26}

18 TR -compact.
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Proof : Let (V;)ier be a family of measurable sets covering X, = Y. Since Ny,
is upper semicontinuous, the set ¥ is closed. For each finite subset S of I, let
Ws = {J;eg Vi- Consider the family F of all measurable sets of the form [Wg U ¥4
where V' is a measurable set disjoint from ¥ and S a finite subset of J. Then F is
downwards directed and (| JF = (. Since m is 7-additive, there are S and V such
that m,([Ws U V]) < e. But then [Ws U V] C Y, and thus Y ¢ Wg UV, which
implies that ¥ € Wg. This completes the proof.

Definition 2.7 A subset G of X is said to be a support set of an m € M(R, E) if
m(V) = 0 for each measurable set V disjoint from G.

Theorem 2.8 Let m € M, (R, E). Then the set

supp(m) = U 125 W] = 0}
pEes(E)

15 the smallest of all closed support sets of m.

Proof : 1f V' is a measurable set disjoint from supp(m), then for each p € cs(E) we
have

p(m(V)) < mp(V) = P N p(z) =0,

which proves that supp(m) is a support set of m since E is Hausdorff. On the other
hand, let F' be a closed support set of m. Given z € F°, there exists V € R with
z €V C F° Now, for each p € cs(E) and y € V, we have that Ny, 5(y) < m,V) =0

and so the set
B = U {22 Nuwpl) & 0}
pEcs(E)

does not intersect V, which implies that z ¢ B = supp(m). Thus supp(m) C F and
the result follows.

3 A Universal Measure

Let R be a separating algebra of subsets of X and let S(R) be the vector space of
all K-valued R-simple functions on X. Let

X:R—=S8R), A~ xa.
Let E be a Hausdorff locally convex space. Every m € M(R, E) induces a linear

map
m:S(R)— E, m (Z )\kXVk) - Z)\km(Vk)-
k=1

k=1
On S(R) we consider the locally convex topologies ¢, ¢, ¢, defined as follows :

1. ¢ is the weakest locally convex topology for which, for each Hausdorff locally
convex space £ and each m € M(R, E), the map 7 : S(R) — E is continuous.
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2. ¢ is the weakest locally convex topology for which, for each Hausdorff locally
convex space E and each m € M, (R, E), the map 71 : S(R) — E is continuous.

3. ¢, is the weakest locally convex topology for which, for each Hausdorff locally
convex space E and each m € M- (R, E), the map 7 : S(R) — E is continuous.

Clearly ¢, C ¢y C ¢.

Lemma 3.1 The topology ¢, is Hausdorff.

Proof: Every z € X defines a 7-additive measure
mgy: R =K, mg(4)=xa(z).

Let g€ S(R), g # 0 and let g(x) # 0. Let 0 < € < |g(z)|. The set
{h € S(R) : [z ()| = [I(x)] < €}

is a ¢r-neighborhood of zero not containing g.

Theorem 3.2 If F = (S(R),p), where p = ¢, ¢ or ¢, then x : R — F is a
member of M(R, F), M;(R,F) or M.(R, F), respectively.

Proof :  Assume that F = (S(R), ¢,). Clearly y is finitely additive. Let E be a
Hausdorff locally convex space and let m € M, (R, E), p € cs(E). Let

W ={se E:p(s) <1}.
Since m € M,(R, E), there exists A € K such that m(R) Cc AW. If
D={ge S(R):1m(g) € W},

then x(R) C AD, which proves that x : R — F is bounded. If (V;) is a net of
measurable sets with Vs | 0, then m(V3) — 0, and so m(Vs) € W eventually, which
implies that xv; € D eventually. Thus x € M, (R, F). The proofs for the cases of ¢
and ¢, are analogous.

Theorem 3.3 Let E be a Hausdor{f locally convex space. Then :

1. The map m — 1, from M(R, E) to the space L ((S(R), ¢), E), of all contin-
uous linear maps from (S(R),®) to E, is an algebraic isomorphism.

2. The map m — 1, from M,(R,E) to the space L((S(R), ¢,), E), is an alge-
braic isomorphism.

3. The map m — 1h, from M.(R, FE) to the space L((S(R), ¢-), E), is an alge-
braic isomorphism.
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Proof : (1) By the definition of ¢, each /1 is continuous. On the other hand,
let u: (S(R,),¢) — E be a continuous linear map and take m = wo y. Then
m € M(R, E) and i = u. The proofs of (2) and (3) are analogous.

Since, for every Hausdorff locally convex space E, every measure m : R — E
is of the form m = w o x, for some ¢-continuous linear map u from S(R) to E, we
will refer to the measure x : R — (S(R),#) as a universal measure. Taking K in
place of £ and identifying each scalar measure 4 on R by the corresponding linear
functional /i, we get the following

Theorem 3.4 The spaces M(R) = M(R,K), M;(R) and M,(R) are algebraically
isomorphic with the spaces (S(R),¢), (S(R), ds)" and (S(R), ¢.), respectively.

Theorem 3.5 On the space S(R), the topology ¢ is coarser than the topology T, of
uniform convergence.

Proof : Let E be a Hausdorff locally convex space and let m € M (R, E). It suffices
to show that m : (S(R), ™) — E is continuous. Indeed, let p € cs(E). There exists
r > 0 such that p(m(A4)) <r for all A € R. Now, for

V={geSR): gl <1/r},

we have that p(/(g)) < 1forall g€ V. Indeed,let g V, g = > ho1 kXA, where
Ay, ..., A, are pairwise disjoint sets . Then |A\y| < 1/7 and so

p((g)) = p(Y_ Mem(Ar)) < max A| - p(m(4))) < 1.
k=1

This completes the proof.

Theorem 3.6 ¢ is the finest of all Hausdorff locally convex topologies p on S (R)
such that, for F = (S(R), p), the map x : R — F is in M(R, F). Analogous results
hold for ¢, and ¢-.

Proof : Let p be a Hausdorff locally convex topology on S(R) such that y : R —
(S(R), p) is a bounded finitely additive measure. By the definition of ¢ , the linear
map

X : (8(R),¢) — (S(R),p)
Is continuous. Since ¥ is the identity map, it follows that ¢ is finer that p. Thus the
result holds for ¢. Analogous are the proofs for ¢, and ¢,.

Corollary 3.7 On S(R) the topology ¢ coincides with the topology 7, of uniform
CONVETPENCE.

Proof : It follows from Theorems 3.5 and 3.6 since x : R — (S(R), 7,) is a bounded
finitely-additive measure.

Let 0 = o(M(R),S(R)). For a o-bounded subset H of M(R), we denote by
H; the set H equipped with the topology induced by o. Let Cy(H,) be the space
of all bounded continuous K-valued functions on H, endowed with the sup norm
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topology. For A € R, the function m — m(A4), m € H, is o-continuous. Also this
function is bounded because H is o-bounded. Hence we get a map

p=py:R—=C(Hy), <p(A),m>=m(A).
Theorem 3.8 For a subset H of M(R), the following are equivalent :
1. H s ¢p-equicontinuous.
2. H is o-bounded and the map p=pg: R — F =Cy(H,) isin M(R, F).

Proof : (1) = (2). Since H is ¢-equicontinuous, it is o-bounded. Clearly u is
finitely additive. We need to show that u(R) is a norm bounded subset of Cj(H,).
Indeed, let V' be a ¢-neighborhood of zero in S(R) such that H < V°. Since
X R — (S(R),¢) is a bounded measure, there exists a non-zero element A of K
such that x4 € AV for all A € R. Thus, for A € R and m € H, we have that
|m(A)| < |A| and hence |[u(A)|| < |A|. Thus, supexr ||p(4)]] < |A|, which proves
that p € M(R, F).

(2) = (1). Since p: R — F = Cy(H,) is a bounded finitely-additive measure, it
follows that i : (S(R),$) — F is continuous. Thus, there exists a ¢-neighborhood
V' of zero such that [|(g)|| < 1forall g € V. Then H C V° and the result follows.

Theorem 3.9 For a subset H of M,(R), the following are equivalent :
1. H is ¢s-equicontinuous.
2. H is o-bounded and the map p= pug: R — Cy(H,) is a o-additive measure.
3. H is o-bounded and uniformly o-additive.
4. SUppep |Im|| < oo and H is uniformly o-additive.

Proof : (1) = (2). Since ¢, C ¢, it follows that H is ¢-equicontinuous and
thus (by the preceding Theorem) p : R — Cy(H,) is a bounded finitely-additive
measure. We need to show that p is o-additive. So let (V},) be a sequence of mea-
surable sets which decreases to the empty set. Since H is ¢,-equicontinuous, there
exists a ¢ -neighborhood V of zero in S(R) such that H C V° Let A # 0. As
X : R — (§(R),¢s) is a o-additive measure, there exists n, such that yy, € AV,
for all n > n,. Thus, for n > n, and m € H, we have |m(V,)| < |A| and thus
lu(An|l < |Al, which proves that p is o-additive.

(2) = (3). Let V,, | 0. Since u(Vy,) — 0 in Cy(H,), given € > 0, there exists n, such
that ||u(Va)|| < € for all n > n,. Thus, for n > n,, we have that |m(V;,| < € for all
m € H, which proves that H is uniformly o-additive.

(3) = (2). It is trivial.

(2) = (1). Since pp = pyg : R — Cy(H,) is a o-additive measure, the map
g : (S(R),¢s) — F is continuous. Hence, there exists a ¢,-neighborhood V of
zero such that |[i(g)|| €1 for all g € V. But then H C V°.

(1) = (4). Since ¢, is coarser than the topology 7, of uniform convergence, it fol-
lows that H is 7,-equicontinuous and hence sup,,c g ||m|| < co. Also H is uniformly
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o-additive since (1) implies (3). This clearly completes the proof.

The proof of the next Theorem is analogous to the one of the preceding Theorem.

Theorem 3.10 For a subset H of M, (R), the following are equivalent :
1. H is ¢r-equicontinuous.
2. H is o-bounded and the map pu = pg: R — Cy(H,) is a T-additive measure.
3. H is o-bounded and uniformly T-additive.

4. SUPcp lm|| < co and H is uniformly T-additive.

Theorem 3.11 ¢, is the weakest of all locally convez topologies p on S(R) such
that, for each non-Archimedean Banach space E and each m € M,(R, E), the map
m: (S(R),p) — E is continuous.

Proof : Let 7, be the weakest of all locally convex topologies p on S(R) having the
property mentioned in the Theorem. Clearly 7, is coarser than ¢,. On the other
hand, let W be a polar ¢,-neighborhood of zero and let H be the polar of W in
M. (R). By the preceding Theorem,

U=pg R :— FE = Cy(Hy,)

is a 7-additive measure. If V' is the unit ball of E, then (2)~1(V) ia a 7,-neighborhood
of zero. Since (2)71(V) C H® = W, the result clearly follows.

4 Integration

Throughout the rest of the paper we will assume that F is a complete Hausdorff
locally convex space (unless it is stated otherwise ) and R a separating algebra
of subsets of a non-empty set X. Let m € M(R,E) and A € R. Let D4 be the
family of all @ = {4y, 4s,...,An;21,%3,..., 2}, where {41, 4s,...,As} is a fi-
nite R-partition of A and z; € A;. We make Dy into a directed set by defin-
ing oy > ay iff the partition of 4 in oy is a refinement of the one in as. For
a= {AI,AQ,...,An;xl,xg,...,xn} € D4 and f € K%, we define

walfym) =Y f(zk)m(A).
k=1

Ifthe limywy(f, m) exists in E, we will say that f is m-integrable over A and denote
this limit by [ 4 fdm. For A = X, we write simply [ fdm. It is easy to see that,
if f is m-integrable over X, then it is m-integrable over every measurable subset A
and [, fdm = [ fxadm. If f is bounded on A, then p([yfdm) < |Iflla- mp(A)
for every p € cs(E).

Using an argument analogous to the one used in [6], Theorem 2.1 for scalar-valued
measures, we get the following
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Theorem 4.1 If m € M(R,E), then an f € KX is m-integrable iff, for each
p € cs(E) and each € > 0, there exists an R-partition {A1, Aa,...,An} of X such
that |f(z) — f(y)| - mp(As) < €, for all 1, if the x,y are in A;. Moreover, in this

case we have that .
p (/fdm - Zf($i)m(Ai)) <e.
i=1

Theorem 4.2 Let m € M(R, E) and let f € KX be m-integrable. Then :

1. f is continuous at every x in the set

D= || {o:Npugle)y£0},

pEcs(E)

2. For each p € cs(E), there exists a measurable set A, with my(A€) = 0, such
that f is bounded on A.

Proof :  (1). Suppose that Np,p(z) = d > 0 and let ¢ > 0. There exists an R-
partition {Aj, Az,...,Ap} of X such that |f(x) — f(y)| - mp(A;) < de, if z,y € A,
If x € A, then [f(y) — f(z)| < eforall y € A;.
(2). Let {Ay, As, ..., An} be an R-partition of X such that | f(z) — f(y)|-m,(4;) < 1,
ifx,y€ A;. Let

A= {4 my(4) > 0}.

It follows easily that f is bounded on A and that m,(A€) = 0.

Theorem 4.3 Let m € M(R,E). If f,g € KX are m-integrable, then h = fg is
also m-integrable.

Proof : Let p € cs(F) and € > 0. There are measurable sets A, B such that
mp(A°) = mp(B¢) = 0 and f, g are bounded on A, B, respectively. Let D = AN B.
Then m,(D°) = 0 and there exists a d > 0 such that || f||p, llgllp < d. Now there
exists an R-partition {Aq, Ao, ..., Ap} of X, which is a refinement of {D, D¢}, such
that
|7 (z) = Fly)l - mp(Ai) <e/d and |g(z) - g(y)| - mp(4i) < €/d

if z,y € A;. Let now xz,y € A;. If A; C DS, then |h(z) — h(y)| - mp(4;) = 0. For
A; C D, we have that

|h(z) — A(y)| = |[f(x) — f(W)lglz) + f¥)lg(z) — g(¥)]]
< max{d-|f(z) - f(y), d- |g(z) — g(v)|}

and so |h(x) — h(y)| - mp(A; < e. This completes the proof in view of Theorem 4.1.

Let now m € M(R, E) and let ¢ € K* be m-integrable. Define

mg: R — E, mg(_f-l):]Agdm.
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Clearly m, is finitely-additive. Also, m, is bounded. In fact, let p € cs(E). There
exists a measurable set B such that m,(B¢) = 0 and g is bounded on B. Let

= [lgllz- Let A e R, W) = ANB, Wy = AN B°. Since g is m-integrable, there
exists an R-partition {V1,Va,...,V,} of A, which is a refinement of {W7, W} such
that |g(z) — g(y)| - mp(V;) < 1ifz,y € V;. Let z; € V;. Then

P (/Agdm— };g(a:@)m(vi)) .

If Vi € Wh, then p(g(z:;)m(V;)) < d- myp(X), while for V; C Wa we have that
p (g(zi)m(V;)) = 0. Thus

P (/ gdm) < max{1, d-my(X)}.
A
This proves that my is bounded and hence mg, € M(R, E).

Theorem 4.4 Let m € M(R,E) and let g € KX be m-integrable. If f € KX is
m-integrable, then f is mg-integrable and [ f dmg = [ fgdm.

Proof : Let p € cs(E). There exists a measurable set D, with m,(D®) = 0, such
that f, g are bounded on D. Let d > max{||f||p,|lgllp}. If V is a measurable set
contained in D¢, then p(my(V')) = 0. This follows from the fact that, for A C V we
have that p(g(z)m(A)) = 0. Let now € > 0 be given. There exists an R-partition
{V1,Va,...,Vn} of X , which is a refinement of {D, D¢}, such that

[f(2) = f(y)l - mp(Vi) < €/d, and |g(z)— g(y)| - mp(Vi) < e/d
if 7,y € V;. We may assume that [J_; V; = D. For A€ R, A C V; C D, we have
p( [ 9am) < lola-my(4) < - my(¥0),
and hence (my),(V;) < d-mp(V;). Thus, for z,y € V; C D, we have

[f(@) = f@)] - (me)p(Vi) < d-[f(z) = fy)] - mp(Vi) < e.

The same inequality holds when V; C D€ This proves that f is my-integrable. If
z,y € V; C D, then

P (/fdmg - Z f(mk)my(vk)) &
k=1
Since, for x,y € Vi C D, we have [g(z) — g(y)| - mp(Vi) < ¢/d, it follows that

P (mg(vic} - g(-rk)m(vk)) = E/d'

For z,y € Vi C D, we have

| (2)g(2)=F ()9 ()| mp(Vi) < myp(Vi)-max{|g(@)|]f(x)~F ()] |f W)]-l9(z)—9(x)]} < e
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Since my (Vi) = 0 if V3, C D¢, we get that

P (fgf dm — Zg(xk)f(:ck)m(m) <e
k=1

Also, for 1 < k < n, we have p (f(zr)g(zr)m(Vi) — f(zr)mge(Vi)) < e. It follows

that
p(fgfdm—/fdmg> < &

This, being true for all € > 0, and the fact that F is Hausdorff, imply that

[osim= [ sam,,

Theorem 4.5 Letm € M(R,E), p € cs(E) andx € X. If g € KX is m-integrable,
then

which completes the proof.

N, p(z) = |9(@)] + N p ().

Proof : Let € > 0. There exists an R-partition {Vi, Va2, --,V,} of X such that
la(y) — g9(2)| - mp(Vi) S eify,z € Vi

Claim I : If V' is a measurable subset of V; containing x, then, for each A C V, we
have

p(mg(A4)) < max{e, |g(z)| - mp(V)} = 0.

Indeed, if z € A, then for each y € A we have that |g(z) — g(y)| - mp(A) < €, which
implies that p(mg,(A4) — g(z)m(A)) < € and so

p(my(4)) < max{e, |g(z)| - p(m(A4))} < 6.

In case z € V'\ A, we get in the same way that p(my(V\ 4)) < 6. Also p(m4(V)) < 6,
since z € V. Thus

p(mg(A4)) = p(my(V) —me(V'\ 4)) <0,

and the claim follows.
Claim II. If W is a measurable subset of V; containing z, then for each measurable
set A C W, we have that

lg(z)| - p(m(A)) < max{e, (my)p(W)} = d.
Indeed, if z € A C W, then p(my(A) — g(z)m(A)) < € and so
lg(z)] - p(m(A)) < max{e,p(my(A))} < d.

If x € W\ A, then |g(z)| - p(m(W \ A)) < d. Also g(z)| p(m(W)) < d, and so again
lg(z)| - p(m(A)) < d, which proves the claim.
Now there are measurable subsets V, W of V; containing x such that

mp(V) < Nmp(z)+¢, and (my)p(W) < €4 Ny, p(z).
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By claim I, we have

ng,p(:c) < (mg)p(v) < max{e, \g(:c)l : mp(v)}
< max{e, |9()|[e + Nimp(z)]}.

Taking € — 0, we get that
Ningp(2) < |g(@)| - Ninp(2).
Also
9(z)] - Nimp(2) < 1g(2)| - mp(W) < max{e, (mg)p(W)} < €+ Ny, ().
Taking € — 0, we get that
l9(z)[ - N p(z) < ng.p(ﬂ:),
which completes the proof.

Theorem 4.6 Let m € M(R, E) and let g € KX be m-integrable. If m is T-additive
(resp. o-additive ), then mgy is T-additive (resp. o-additive ).

Proof : Assume that m is 7-additive and let V5 | 0 and p € cs(E) There exists an
A € R such that my(A°) = 0 and ||f||la = d < co. Given € > 0, there exists a ,
such that m,(Vs) < ¢/d if § > d,. For a measurable set V disjoint from A, we have
p(mg(V)) = 0. Thus, for § > 4,, we have

p(mg(Vs)) = p(my(Vs N A)) < |lgllvsna - mp(Vs N A) < d-myp(Vs) < e

This proves that my is 7-additive. The proof for the o-additive case is analogous.

The proof of the next Theorem is analogous to the one given in [8], Theorem
2.16, for scalar-valued measures.

Theorem 4.7 Letm € M(R, E). For a subset Z of X, the following are equivalent:
1. xz is m-integrable.

2. For each p € c¢s(E) and each € > 0, there are measurable sets V,W such that
VCcZcW andmp(W\V) <e.

For m € M(R, E), let Ry, be the family of all A C X such that x4 is m-integrable.
Using the preceding Theorem, we show easily that Ry, is a separating algebra of
subsets of X which contains R. Define

m:Ry — F, ﬁ(A):fXAdm.

The proofs of the next two Theorems are analogous to the corresponding ones
for scalar valued measures (see [8], Lemma 2.18, Theorems 2.22, 2.23, 2.24, 2.26 and
Corollary 2.25 ).
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Theorem 4.8 1. For A€ R and p € cs(E), we have mp(A) = iy (A).
2. m 1s o-additive iff m is o-additive.
3. m 18 T-additive iff m is T-additive.
4: Nuwp = Nege
3. Ry = Rem.

Theorem 4.9 1. If f € KX is m-integrable, then f is also T-integrable and

[fdm= [ fdm.

2. If f € K¥ is m-integrable and bounded, then f is also m-integrable.

Lemma 4.10 If m € M, (R, E), then every Tr-clopen set A is in R,,.

Proof : Let p € cs(E) and € > 0. Consider the collection F of all R-measurable
sets of the form W\ V, where V,\I/W € Rand V C¢ A C W. Then F | 0. As m is
T-additive, there exists an W\ V' € F such that m,(W \ V) < ¢, which proves that
AeR,.

Theorem 4.11 Letm € M, (R, E) and f € KX. If f is bounded and T -continuous,
then f is m-integrable (and hence T-integrable ).

Proof : Without loss of generality, we may assume that ||f|| < 1. Let p € cs(E)
and € > 0. The set ¥ = {x : Ny p(x) > €} is 7gr-compact. Choose 0 < ¢; < € such
that €;.m,(X) < e. There are z1,%2, -+ ,Zn € Y such that the sets

Ay ={z : p(f(z) — flzx)) < a}y k=1,---,n.

are pairwise disjoint and cover Y. Each Ay is mr-clopen and hence it is a member
of Ry. Let Vi, Wi € R be such that V}, € A C Wi and m,(Wg \ Vi) < e. Let
Va1 = (Up=1 V&)¢. Then V,1; is disjoint from Y. Indeed, if z € ¥ N V,41, then
z € Wy, for some k, and s0 N p(z) < mp(Wi \ Vi) < €, a contradiction. As m is
T-additive, we have that my(Vyp41) = SUPsev,,, Vmp(z) < € fnow z,y € V4, i < n,
then

(@) F@)] - mp(Vi) < 1. - mp(X) < e.

Also, if z,y € Vhqy, then |f(z) — f(y)| - mp(Vns1) < e This proves that f is
m-integrable.

Theorem 4.12 Let m € M (R, E). For a subset A of X, the following are equiva-
lent :

1. A€ Rp.
2. A is tp,_ -clopen.

Proof : Clearly (1) = (2). On the other hand let A be 7g,-clopen. Since ™ is
T-additive, it follows (by Theorem 4.11) that x4 is Ti-integrable and hence x4 is
m-integrable (by Theorem 4.9), which means that 4 € R,,.
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Theorem 4.13 Let m € M. (R, E) and consider on X the topology 7z. Then the
map

tm : Co(X) = E, u.m(f}:/fdm—]fdﬁ

s B-continuous. Also, every (B-continuous linear map u : Cp(X) — E is of the
form u = wu,, for some m € M, (R, E).

Proof : Let p € ¢s(F) and G € 2. We need to show that the set

V ={f € C(X) : p(um(f)) <1}

is a fg-neighborhood of zero. Indeed, let 7 > 0. There exists a decreasing net (V)

of Tr-clopen sets with (; —17560)( = (G. Since V5 € Ry, and ™ is T-additive, there
exists a ¢ such that m, (V) < 1/r. Now

Vi={feC(X):lfl <r, Ifllve <1/Imlip} C V.

In fact, let f € V1 and set h = fxy;, g = fxvg. Then

p( [ ham) = ( [ ham) < bl Ty <1
p([odm) =p ([ oam) <im0 <1

Thus p([ fdm) < 1, which shows that V; C V. Since the closure of Ve in B X is
disjoint from G, this proves that V is a Sg-neighborhood of zero. This, being true for
every G € Q, implies that V' is a #-neighborhood of zero and so wu,, is S-continuous.
Conversely let u : (Cp(X), 8) — E be linear and continuous. Since 3 is coarser than
the topology of uniform convergence, it follows that, for each p € cs(E), there exists
a non-zero A € K such that

{f € Go(X) : [IflIl = IA} € {f : p(u(f)) <1}
Let K(X) be the algebra of al 7-clopen subsets of X. Define
piK(X)—E, p(A)=u(xa)

Clearly p is finitely-additive. Also, since |Axa| < |A[, it follows that p(u(4)) <
[A|=!, and so p is bounded. If (V;) is a met of clopen sets which decreases to the
empty set, then xy; — 0 with respect to the topology S and so (V) — 0. Thus
p € M (K(X),E). The restriction m = p|g is in M, (R, E). The subspace F of
Cy(X) spanned by the functions x4, 4 € K(X), is S-dense in Cy(X). Since u and
Um are both S-continuous and they coincide in F, it follows that u = u,;, on Cy(X).
This completes the proof.

Theorem 4.14 Let X be a zero-dimensional Hausdorff topological space and E a
Hausdor(ff locally convex space. Then a linear map u : Cy(X) — E is B-continuous
iff it is Bo-continuous.
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Proof : Let E be the completion of E and let K(X) be the algebra of all clopen
subsets of X. Suppose that u is S-continuous. Then u : (Cy(X),3) — E is contin-
uous. In view of the preceding Theorem, there exists an m € M. (K (X), E) such
that u(f) = [ fdm for all f € Cp(X). Let p € cs(E) and

V = {f:plu(f)) < 1}.

We need to show that V is a @,-neighborhood of zero. By [4], Theorem 2.8, it suffices
to show that, for each 7 > 0, there exists a compact subset ¥ of X and ¢ > 0 such
that

Vi={feC(X):fll <n |Iflly Le}CV

Choose € > 0 such that e-my(X) < land r-e < 1. Theset X; = {x : Npmp(z) > €}
is compact. In the definition of V] take as ¥ the set Xp.. Let f € Vj and A = {z :
|f(z)| < €}. Then mp(A°) = supeac Nmp(z) < €. Now

p(ffdm)ge-mp(X)gl, and p(/ fdm)gr-mp(Ac)gl.
A Ac
Thus Vi C V and the result follows.

Theorem 4.15 Let R be a separating algebra of subsets of a set X and consider on .
X the topology Tr. Then ¢, coincides with the topology induced on S(R) by B, and
by the topology induced by 3.

Proof : If (Vj) is a net of measurable subsets of X which decreases to the empty

set, then xv; | 0 and so xv; i 0. Thus
x:R—(S5(R),B)

is a 7-additive measure. In view of Theorem 3.6 , it follows that ¢, is finer than the
topology induced on S(R) by . On the other hand, let £ be a Hausdorff locally
convex space and let E be its completion. If m € M.(R, E), then m € M. (R, E).
The map

w: O (X) = B, u(f) = f Fidii.

is Bp-continuous. Since 1 = u|g(r), it follows that i : (§(R), B,) — F is continuous
and hence 7 : (S(R),3,) — F is continuous. This implies that ¢, is coarser than
the topology induced on S(R) by £, and the result follows.

Corollary 4.16 The topology ¢+ is polar and locally solid.

Lemma 4.17 Let Z be a vector space over K , D a subspace of Z and 71, T
Hausdor(f locally convex topologies on Z which induce the same topology on D and
for both of which D is dense in Z. If 7 s finer than 71, then 71 and ™ coincide
on Z.
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Proof: Let G = (Z,72) and let G be its completion. The identity map T : (Z,72) —
G is clearly continuous. Let § = T[ p- Since 7y and 7 induce the same topology on
D, it follows that S : (D,7;) — G is continuous. As D is 7y-dense in Z, there exists

a unique continuous extension S (Z,7) — G. Now § : (Z,72) — G is continuous.
Since S =T on D and D is To-dense in Z, it follows that S =T on Z. Thus

Fe=f  (Zm) = 6
is continuous, which clearly implies that 7 is finer than 7 and the Lemma follows.

Theorem 4.18 For any zero-dimensional Hausdorff topological space X, the topolo-
gies B and B, coincide on Cy(X).

Proof :  Let K(X) be the algebra of all clopen subsets of X. Since S(K (X)) is
-dense in Cy(X), the result follows from Theorem 4.15 and the preceding Lemma.

Theorem 4.19 Let A be the family of all pairs (m,p) for which there exists a
Hausdorff locally convex space E such that p € cs(E) and m € M, (R,E). To each
& = (m,p) € A corresponds the non-Archimedean seminorm ||-||n,,, on S(R). Then
¢+ coincides with the locally conver topology p generated by these seminorms.

Proof : Let E be a Hausdorff locally convex space, m € M. (R, E) and p € cs(E).
If g =3k 106x4, € S(R), then

p(m(g)) (Z apm(Ay ) < m}?XIOfH p(m(Ak)) < Mgl Nom -

Thus 7 : S(R),p) — E is continuous and so ¢, is coarser than p. On the other
hand, let (m,p) € A and

V ={g€S(R):p(i(g)) < 1}.
Since ¢ is locally solid, there exists a solid ¢,-neighborhood V; of zero contained in

V. Now Vi C {g: ||gll¥n, <1} In fact, assume that, for some g = o, arxa, €
Vi1, we have that ||g|[n,,, > 1. There exists an z in some Ay, such that

l9(z)| - Nnp(#) = |ek| - Nnp(z) > 1.
There is a measurable set A contained in Ay such that |ag| - p(m(A)) > 1. If

h = agxa, then |h| < |g| and so h € V3, which is a contradiction since p(rh(h))
This contradiction shows that

Vi {g:llgllnm, <1}

Thus p is coarser than ¢, and the result follows.
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5 (VR)-Integrals

Throughout this section, R will be a separating algebra of subsets of a set X, E a
complete Hausdorff locally convex space and m € M (R, E). For p € cs(E), and
feKX, let
Pl 3oy = S0P [ f(2)] + Nim,p ().
z€X

Let Gr, be the space of all f € K¥ for which ||f|ln,., < oo, for each p € cs(E).
Bach [[.[|n,,, 15 a non-Archimedean seminorm on Gy,. We will consider on Gy, the
locally convex topology generated by these seminorms.

Lemma 5.1 Ifg=37_; arxa, € S(R), then

p (Z akm(Ak)) < 19/l Nom -
k=1

Proof : We first observe that

Ifg=a- xa, where ¢ € K and A € R, then

pla-m(A)) <|a| -mp(A) = |af sup N p(z)
TEA

sup [g(z)| - Nenp(x) = [|9l| Npm -
zeX

In the general case, we may assume that the sets Az, & = 1,...,n, are pairwise
disjoint. Then

n
p| D ar-m(Ax) | < max|ag| - mp(Ar) = max sup |9(2)] - Nnp(x) = |9l -
Facee ke k TEAL

Lemma 5.2 If we consider on S(R) the topology induced by the topology of G,
then

w:SMR)—=FE, w(g = /gdm
18 a continuous linear map.

Proof : 1t follows from the preceding Lemma.

Let now S(R) be the closure of S(R) in G, and let

(R) = E

Cn

o
be the unique continuous extension of w.

Definition 5.3 A function f € K¥ is said to be (VR)-integrable with respect to m

if it belongs to S(R). In this case, W(f) is called the (VR)-integral of f, with respect
to m, and will be denoted by (VR) [ fdm. We will denote by L(m) the space S(R).
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Theorem 5.4 If f is (VR)-integrable, then, for each p € cs(E), we have
p(vm [ fdm) < 1o
Proof : There exists a ne (g;) in S(R) such that gs — f in S(R). Then

VR [ fim=tim [ gsdm, and Ngslln,, = 17l

" ( f g dm) < losllno,

Theorem 5.5 The space Gy, is complete and hence L(m) is also complete.

Since

the result follows.

Proof : Let (fs) be a Cauchy net in G,,, and let

A4 = U 12 1 Dl > 0}
pecs(E)

Let z € A and choose p € cs(E) such that Np, ,(z) = d > 0. Given € > 0, there
exists a 6, such that | fs — fslln,,, < deif 6,8 > §,. Now, for 6,8 > 6,, we have
|fs(x) — fs:(z)| < e. This proves that the net (f5(x)) is Cauchy in K. Define

f(z) =limf5(z), If zeA

and f(z) arbitrarily if z ¢ A. We will show that f € G, and that f5 — f. Indeed,
given p € ¢s(E) and ¢ > 0, there exists 6, such that

|fs(z) — fsr ()] - N p(z) <€

for all z and all §,6" > 6,. Let now § > §, be fixed. If z € A, then taking the limits
on ¢', we get that |f5(z) — f(z)| - Nmp(z) < €. The same inequality also holds when
xz ¢ A. Thus, for all § > 4,, we have

sup ‘fé(x) - f(a:)l : ‘Nm,p(m) =< €,
zeX
It follows from this that , for all z € X, we have

|f(@)] - Nenp(z) < max{e, || fo, | 5 }

which proves that f € Gy, Also, ||f — fslln,, < € for 6 > §,. Hence f5 — f and
the proof is complete.

Theorem 5.6 For a subset A of X, the following are equivalent:

1. xa is (VR)-integrable.
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2. For each p € ¢s(E) and each € > 0, there exists V € R such that Ny, p, < € on
AAV.

3. For each p € cs(E) and each € > 0, there exists V € R such that

V (1 K = AU K

Proof : (1) < (2). The proof is analogous to the one given in [13], Lemma 7.3 for

scalar valued measures.
(2) & (3). It follows from the fact that, for V € R, VN X, = AN X, iff
Nmp<eon AAV.

Let now R,, be the family of all subsets A of X for which x4 is (VR)-integrable
with respect to m. It is easy to see that Ry, is a separating algebra of subsets of X
which contains R. Let T, be the zero dimensional topology having R, as a basis. In
view of Theorem 2.5, for all p € cs(E) and all € > 0, the set X, = {z : Nmp(z) > €}
is 7-compact. Since A € Ry, iff, for all p € cs(E) and all € > 0, there exists V € R
such that VN X, = AN X, it follows that X, is T, -compact. Also, since 77
is Hausdorff, 7z and 75  induce the same topology on X, .. Now we define

m: Ry — E, m(A)= (VR)] XA dm.
A
Clearly 7 is finitely-additive. Also 72 is bounded since, for each p € cs(E), we have

p(m(A4)) < i‘élj Ni p() < myp(X).

Thus 7 € M (R, E).

Lemma 5.7 If V € R, then mp(V) = my(V).

Proof : 1t is clear that m,(V) < /,(V). Suppose that m,(V) > 8 > 0. There
exists A € Rm, A C V, p(m(A)) > 0. Since p(f(A)) < sup,eq Nmp(2), there exists
x € A such that Ny p(z) > 0 and so mp(V) > Npp(z) > 6. This proves that
mp(V) = M, (V) and the Lemma follows.

Lemma 5.8 Np,p = Niyp.

Proof :  Since mp(V) = mp(V) for V € R, it follows that Npp > Np,p. Assume
that there exists an z such that Ny p(z) > 6 > Nj,(z). Let z € A € Ry, be such
that m,(A) < 0. Let Y = X, ¢ and let V € R be such that VNY = ANY. Since
z € ANY, we have that x € V and so mp(V) > Nppp(z) > 0. Let DeR, DCV
be such that p(m(D)) > 8. Now p(m(D N A)) < m,(A) < 6 and hence

p(m(D)) = p(m(DNA%)) < sup Npy(y).
yeD\A

But, for y € D\ A, we have that Np,(y) <8 since D CVand ANY =V nY.
Thus 8 < p(m(D)) < 8, a contradiction. This completes the proof.
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Lemma 5.9 For A C X, we have A € Ry, iff A is T, -clopen.

Proof : Clearly every A € Ry, is T, -clopen. On the other hand let A be TR~
clopen and let p € ¢s(E), € > 0. Since 7 and Tp, induce the same topology on
Xpe, theset G = A[) X, is clopen in X, ¢ for the topology induced by 7. For each
z € G, there exists an A; € R such that z € A; | Xpe C G. As G is 7r-compact,
there are =1, 2, ..., 7, € G such that

n
G=JAnNXpe=VNX,,
k=1

where V' = (J}_; 4z, € R. In view of Theorem 5.6, A is in R,, and the result
follows.

Theorem 5.10 7 € M, (R, E).

Proof : Let Abe a family in R,, which decreases to the empty set and let p € cs(E),
€>0,Y = X, Foreach A in A, there exists B € R such that BNY = ANY.
Let

B={BeR:JAc 4L, ANY =BnY}

It is easy to see that B | 0. Since m € M, (R, E), there exists B € B such that
mp(B) < e Let A€ Abesuchthat ANY =BNY. Ifz € A4, then z ¢ Y and so
Nmp)x) < e If G € Ry, is contained in A, then

p(m(G)) < sup Ny p(z) < ¢
zeG

and so 1, (A) < €. This proves that

A}léi}d mp(A) =0

and so m € M, (R, E).
Lemma 5.11 If g € S(R,,), then for each p € cs(E) and each € > 0, there exists
an h € S(R) such that [|h — g||n,,, < €.

Proof :  Assume that g 7 0 and let A;, A, ..., A, be pairwise disjoint members
of R, and non-zero scalars aj,om,...,a, such that g = >0 apxa,. Let r =
maxy |ag|. For each k, there exists a By € R such that N, < €/7 on A AB.
Since

loexay, — CexBllNmp < lokl - sUD  Ninp(z) <o
TEALAB

it follows that [|h — g||n,,, < €.

Using Lemmas 5.7 and 5.11, we get the following
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Theorem 5.12 A function f € KX is (VR)-integrable with respect to m iff it is
(VR )-integrable with respect to . Moreover

(VR)ffdm: (VR)/fdm

Theorem 5.13 If f € K¥ is m-integrable with respect to m, then it is also (VR)-
integrable and

/fdm:(VR)/fdm.

Proof : Let p € cs(E) and € > 0. There exists a R-partition {V7,V5,...,V,} of X
such that |f(z)— f(y)| - mp(Vi) <eifz,y € Vi. Let z € Vo and g = > p_; F(zk)XW -
For = € V)., we have

|f(z) = g(@)| - Nmp(2) = [f(z) = f@e)] - Nmp(x) < |f(2) = flzp)] - mp(Ve) <e.

This proves that f is (VR)-integrable. Also p ([ fdm — [gdm) < € and

p(R) [ fam= [gam) = (WR) [~ gydm) <15 - slv,., <<

Thus
P(ffdm(VR)/fdm) de

Since F is Hausdorff, it follows that

/fdm—(VR)/fd.m.

Theorem 5.14 Let Y be a zero-dimensional topological space and f : X — Y.
Then f is 75 -continuous iff, for each p € cs(E) and each € > 0, the restriction of
[ to X, . is TR~ continuous.

and the proof is complete.

Proof :  Since tr and T, induce the same topology on X, the necessity of the
condition is clear. On the other hand, assume that the condition is satisfied and
let Z be a clopen subset of Y. We need to show that f=1(A) is T4, -Clopen, or
equivalently that f~1(A4) € R,,. Let p € cs(E) and e > 0. The restriction h of f to
Xp.e is Tr-continuous. Thus

G=fHA) N Xpe =h7HA)

is clopen in X, . for the topology induced by 7z. For each x € G, there exists V; € R
such that z € V; (X, C G. Since G is Tr-compact, there are z1,z2,...,%, in G
such that .
g = | Ve 0 X
k=1
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If V =Jp_q Va, € R, then
VX = A D&
In view of Lemma 5.9, we get that f~1(A4) € R,, and we are done.
Theorem 5.15 Let m € M-(R,E) and f € KX. Then, f is (VR)-integrable iff :

a) f is 5 -continuous.
b) For each p € cs(E) and each € > 0, the set

D= {z:|f(z)] Nmp(x) Z €}
is Tz -compact.

Proof : Assume that f is (VR)-integrable and let p € cs(E) and e > 0. There exists
a sequence (gn) in S(R) such that ||f — Inll N, — 0. For z € X, ., we have that

|f(2) = gn()| < Ve [If = gnllvpm, — 0

uniformly. Since each g, is Tr-continuous , it follows that f J Xp. 18 Tr-continuous
and so f is T, ~continuous. Also, given ¢ > 0, there exists a g € S(R) such
that ||f — glln,,, < e Let {V1,V5,...,V,} be pairwise disjoint members of R and
a1, a2, .., 0, non-zero scalars such that g = % )'_; axxv,. Now

D={z:9(2)| - Nmp(z) 2 e} = [ JIVi N {z: Nnp(@) > e/ |el}],
k=1

and so D is Tp -compact. Moreover
D= {z:|f(z)| - Nmp(z) > €}.
Conversely, assume that the conditions (a), (b) are satisfied. Let p € cs(E), € > 0
and
D ={z:|f(z)] - Npnp(z) = c}.
For each z € D, there exists an A, € R,, such that
z € Az C{y: |f(y) — f(2)] < ¢/mp(X)}.

By the Rm-campactness of D, there are y1,y2,...,yn € ¥ such that D C |J7_; Ay,
Now, there are pairwise disjoint sets Vi, Va,..., Vi in R,, such that D C U;\;l Vi
and each V; is contained in some A4,,. Let

N
zi €Vi, = flz)xy;
Jj=1
Ifz € Vj, then
|f(z) = 9(@)] - Nmp(@) = |f(z) = f(2;)] - N p(@) < llmllp - ¢/ [mllp =,
while, for z ¢ Ujil V; we have g(z) = 0 and = ¢ D, which implies that

|f(z) — g(z)| - Nmp(z) = | f(z)| - Nipp(z) < €.
This proves that f is (VR)-integrable with respect to m and hence it is (VR)-
integrable with respect to m. This completes the proof.
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6 The Measure my

In this section we will assume that E is a complete Hausdorff locally convex space,
R a separating algebra of subsets of a set X and m € M.(R,E). Let f € KX be
(VR)-integrable with respect to m and define

s : Rm — B, ﬁaf(A)—(VR)Lfdm:(VR)fXAfdm.

Then, for each p € cs(E), we have

p(mg(A)) <sup|f(x)| - Nmp(z) < Hf“N’rn_‘pi

z€A

and so 1y is bounded and clearly finitely-additive. Also 7y is 7-additive. Indeed,
let (As) be a net in R, which decreases to the empty set and let p € cs(E), e > 0.
There exists a ¢ € S(R) such that || f — glln,,, < e If g =37 arxv,, where
V1, Va, ..., V, are pairwise disjoint members of R, then

g(As) =D axi(Vi N Ag).
k=1

Since As N Vj | @ and m is 7-additive, there exists &, such that p(mg(4s)) < € if
6 > d,. Also

p(mg—g(As)) S If ~ 9llNm, <€
Thus, for § > d,, we have that p(my(As)) < €, which proves that my € M. (R, B).

Lemma 6.1 Ifg € S(R), then Ns, (x) = |g(x)| - Nmp(x).

Proof : Let g = 3°p_; axXv,, where {Vi,Va,...,Vp} is an R-partition of X. Let
z € Vi and h = agxy,. If A € Ry, is contained in Vj, then

g(4) = n(4) = o (VR) [ xadm = g(e)mn(4).

Thus
Ny o () = [9(2)| - Np(x) = |9()| - Nmp().

Lemma 6.2 Let f,g € KX be (VR)-integrable with respect to m. Then for each
V € Ry, we have
|(Mg)p(V) — (Mg)p (V) S |f = 9llNmp-

Proof :  Assume (say) that (/f),(V) — (7g)p(V)] = 0. Given € > 0, there exists
A € R, contained in V such that (my)p(V) < p(myp(A)) + e Now
0 < (Mmy)p(V) — (g )p (V) e +p(ms(A)) — p(my(A))
< et p(rng(A) —1mg(A))
e+p(s—g(A) S e+ |f — 9l

A

and the Lemma follows taking e — 0.
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Lemma 6.3 Let f,g € KX be (VR)-integrable with respect to m. Then

|N‘rﬁf,p($) - thg,p(x)l S ”f - g”j\rm,p'

Proof - Suppose (say) that 0 < N, p(x) — N, p(z) and choose a V € R,
containing x such that (7, (V) < N, p(z) + €. Now

0= Ningp(€) = Ning p(2) < (7)p(V) = [(Fg)p(V) — €] < €+ [|f — gl Nom -

Taking € — 0, the Lemma follows.
Theorem 6.4 If f € KX is (VR)-integrable with respect to m, then
thf,p(m) = jf(x)j ) Nm,p(w)-

Proof : Given € > 0, there exists a g € S(R) such that || f —g||w,, , < ¢. By Lemma
6.1, we have Np,, . (z) = |9(z)| - N p(z). Also

Ha(@)| - Nmp(z) = |f(2)] - Nemp(x) | < |g9(2) — f(2)] - N p(z) < €.
Thus
|Noivg o= F (@) Nemp(2)] < |Nisvy p(2) = N p (@) |+ |9(2) |- Nen p (2)— | £ (2) |- N p () | < 2.

As € > 0 was arbitrary, the Theorem follows.

Lemma 6.5 If f € KX is (VR)-integrable with respect to m and h € S(R), then
hf is (VR)-integrable.

Proof : Let ¢ > 0, p € cs(E), d > ||h||. Choose g € S(R) such that ||g — s %
e/d. Now gh € S(R) and ||hf — gh|N,,, < €, which proves the Lemma.

Theorem 6.6 Let f € KX be (VR)-integrable with respect to m. If g € KX is
(VR)-integrable with respect to s, then gf is (VR)-integrable with respect to m
and

(VR)/gfdmz (VR)/gdﬁzf.

Proof : Given p € cs(E) and € > 0,let h € S(R,;) be such that [|g — Al|n.,. < e

™ p

Let d > [|h[| and choose fi € S(R) such that ||f — fi|ln,., < e/d. If V € Ry, then
/XV d?’ﬁf = ﬁ’.‘,f(V) = (VR)/va dm

and so [ hdmys = (VR) [ hf dm. Now

o (vR) [gan; - [hamy) < g~ bl <<
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If fo = f— fi, then
”hfz“N'm,p S € a‘nd Hg - h‘)f”j\r‘m,p = Hg - h“Nﬁzf,p S €.

It follows that ||gf — hfil|n,,, < €. Since hf; is (VR)-integrable with respect to m,
we get that gf is (VR)-integrable with respect to m. Also,

P ((VR)/fgdmw (VR)fhfdm) < Nl = hfllwn, < <.

It follows that

P ((VR) /fg dm — (VR)/QdﬁLf) <,
which clearly completes the proof.

Theorem 6.7 Let f,g € KX be (VR)-integrable with respect to m. If g is bounded,
then :

1. g is (VR)-integrable with respect to .
2. gf is (VR )-integrable with respect to m.
4. (VR) [ gf dm = (VR) [ gdrn;.
The same result holds if we assume that [ is bounded.

Proof :  Assume that g is bounded. In view of the preceding Theorem, we only
need to prove (1). By Theorem 5.15, g is T, -continuous. As g was assumed to be
bounded, we get that g is integrable with respet to /¢, which implies that it is (VR)-
integrable with respect to the same measure (by Theorem 5.13). Thus (1) holds. In
case f is bounded, let d > || f(| and choose h € S(R) such that ||g — Al|n,,, < €/d.
Now

g = hlln, , = lltg = W) fly < &

and so the result follows.

Theorem 6.8 Let f € KX be (VR)-integrable with respect to m and let g € KX be
m-integrable. Then :

1. g is (VR)-integrable with respect to Thy.
2. gf is (VR )-integrable with respect to m.
3 (VR) [ gf dm = (VR) [ gdm;.

Proof : Let p € cs(E) and ¢ > 0. Since g is m-integrable, there exists a V' € S(R),
with mp(V¢) = 0, such that ||g|v = d < co. Let g1 = gxv. By the preceding
Theorem, there exists an h € S(R,,) such that ||g; — hHNmf,p < e For z € V¢, we
have

lg(z) = h(@)| - Ny , () = |f(2)(9(2) — h(2))] - Nimp(2) = 0.

Thus ||g — Al Npgp S € This proves (1) and the result follows.
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7 The Completion of (S(R),¢,)

In this section, R will be a separating algebra of subsets of a non-empty set X. We
will equip X with the topology 7. Asin [ 9], we will denote by X*) the set X
equipped with the zero-dimensional topology which has as a base the family of all
subsets A of X such that ANY is clopen in Y for each compact subset ¥ of X. We
will prove that (Cb(X(k)),ﬁg) coincides with the completion F' of F = (S(R), ¢r).
As F'is a polar Hausdorff space, its completion is the space of all linear functionals
on F' = M(R) which are o(F', F)-continuous on ¢--equicontinuous subsets of
M, (R) (see [10 ]). The topology of F' is the one of uniform convergence on the
¢r-equicontinuous subsets of M.(R). Since ¢, is the topology induced on S(R) by
B, and since 3, and the topology 7, of uniform convergence have the same bounded
sets, it follows that the strong topology on F” is the tropology given by the norm
m > [|m].

Theorem 7.1 The comp[etwn F of F is an algebraic subspace of the second dual
F". The topology of F is coarser than the topology induced on F by the norm topology
of F".

Proof :  Let u be a linear functionmal on M;(R) which is ¢(F’, F)-continuous on
¢r-equicontinuous subsets of M, (R). Then u is norm-continuous. Indeed, let (m,,)
be a sequence in M;(R) with ||my|| — 0. The set H = {m, : n € N} is uniformly
T-additive. In fact, let (V) be a net in R which decreases to the empty set and let
€ > 0. Choose n, such that ||m,|| < €if n > n,. If §, is such that |m,|(V;) < €
for all 6 > §, and all n = 1,2,...,n,, then |m|(Vs) < € for all m € H and all
§ > do. In view of Theorem 3.10, H is ¢,-equicontinuous. As [ gdm, — 0 for all
g € S(R), it follows that u(m,) — 0 and so v € F”. The last assertion is a con-
sequence of the fact that every ¢ -equicontinuous subset of M, (R) is norm bounded.

Let K(X) be the algebra of all 7r- clopen subsets of X. For m € M, (R, E), let
m:K(X)—-K, mA) = fXAdm-
Then m € M, (K(X)).

Lemma 7.2 If H is a uniformly T-additive subset of M, (R), then the set
H={m:meH)
is a uniformly T-additive subset of M, (K(X)).

Proof : Let (V;) be a net in K(X) which decreases to the empty set. Consider
the family F of all A € R which contain some V5. Let A;, 4y € F and let 61,69
be such that Vi, C A;, for i = 1,2. If § > 61,8, then Vs € A = Ay N As, which
proves that F is downwards directed. Also, (VF = 0. Indeed, let z € X and
choose Vs not containig x. There exists a B € S(R such that z € B C V§. Now
Vs C A= B®and x ¢ A, which proves that ()7 = 0. As H is uniformly r-additive,
there exists A € F with |m|(A) < e for all m € H. If V; is contained in A, then
|| (Vs) < |m|(A) = [m|(A) <, for all m € H, and the Lemma follows.
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Theorem 7.3 (Cy(X),5,) is a topological subspace of F.

Proof : Let f € Cy(X). Without loss of generality we may assume that || f|| < 1.
For each m € M;(R), the integral [ fdm exists. Thus f may be considered as a
linear functional on M,(R) = F’. Let H be an absolutely convex ¢,-equicontinuous
subset of M;(R) and let (ms) be a net in H which is ¢(F’, F)-convergent to zero.
We will show that [ fdms — 0. As H is ¢,-equicontinuous, we have that d =
Supep |Im|| < co. By the preceding Lemma, the set H is a norm-bounded uniformly
T-additive subset of M, (K (X)). By [4], Theorem 3.6, given € > 0, there exists a
compact subset ¥ of X such that |m|(V) = |m|(V) <cforallme HandallV € R
disjoint from Y. For each z € Y, there exists an A, € R containing x and such that

Az CH{y : |f(y) — f(z)] < e/d}.

By the compactness of Y, there are 1, 23, ..., 2, in Y such that Y € J?_; As,. Now
there are pairwise disjoint sets By, Ba, ..., By in R covering Y such that each B; is
contained in some A, . Let y; € B; and g = Zfil fyi)xp,- Forz € B= U,fil B,
we have that |f(z) — g(z)| < ¢/d and |m|(B¢) < € for all m € H. Let §, be such
that | [ gdms| < € if § > §,. Since

/jg(f*g)dma

it follows that | [ f dms| < € for all § > §,. This proves that f € F.

Since 3, is polar, it follows from [4], Theorem 3.6, that 3, is the topology of uni-
form convergence on the family of all norm-bounded uniformly 7-additive subsets
of M;(K(X)). Let Z be such a subset of M-(K (X)) and let H = {m|p : m € Z}.
Then H is uniformly 7-additive subset of M, (R) and

< [ml(B%) <,

<d-lf=glp < and |[ (7-g)dms

sup [[ull = sup [jm] < oo.
LEH mez

If H° is the polar of H in F' and Z° the polar of Z in Cy(X), then Z° = H° N Cp(X).
Now the result follows from this, the preceding Lemma and Theorem 3.10.

Theorem 7.4 The completion of the space F' = (S(R), ¢.) coincides with the space
(Ob(X(k)a )60)'

Proof : By the preceding Theorem, (Cy(X),5,) is a topological subspace of F.
Thus F' coincides with the completion of (Cy(X), 3,). Now the result follows from
[8], Theorem 4.3, in view of [9], Theorem 3.14

Let now E be a complete locally convex Hausdorff space and let m € M, (R, E).
In view of the preceding Theorem, there exists a unique [3,-continuous extension wu
of 11 to all of Cy(X®). We will show that, for all f € C,(X*®)) we have u(f) =
(VR) [ fdm.

Theorem 7.5 Let m € M, (R, E), where E is a complete Hausdorff locally convex

s
e u: (Cy(XH¥)), 5) — E

87
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is the unique continuous extension of i, then u(f) = (VR) [ f dm.

Proof : Let f € Cy(X®)). Without loss of generality, we may assume that N7l < 1.
Let T' be the set of all v = (p,¥,n), where p € cs(E), n € N and Y a compact
subset of X. We make I into a directed set by defining (p1, Y1,n1) > (pa, Y3, n9) iff
P1 = P2, Yo C Y7 and ny > ny. Let

B={geC(Xx®):|lg|l < 1}.

On B, 8, coincides with the topology of uniform convergence on the compact subsets
of X®) (equivalently on compact subsets of X by [9], Corollary 3.14).
Claim: For each v = (p, Y, n), there exists a g, € S(R) , gy € B, such that

If=gylly £1/n, |f = gyl < 1/n

Indeed, choose € > 0 such that € < 1/n and €- |[m||, < 1/n. The set
Z=Y| J{z: Nmp(z) > ¢}
is compact. For each y € Z, there exists V, € S(R) containing y and such that
VyNZ C{z:|f(2) - f(y)l <e}.

By the compactness of Z, there are pairwise disjoint W1, Wa, ..., Wy in S(R) cov-
ering Z and such that each W; is contained in some V. Choose z;, € W}, and take
= Ej:\;] f(z)xw,. Then g, € B. f z € Y, then |f(z) — g4(z)| < € < 1/n and so
If—gylly £1/n. Also,ifz e W = Ui\r:l Wy, then

[f(®) = gy(@)] - Nem () < €+ [Iml, < 1/n,

while for z ¢ W we have that Ny, ,(z) < e < 1/n. Thus ||f — 9yl N, < 1/n, which
proves our claim.

Now the net (gy) is in B and converges to f with respect to the topology of uniform
convergence on compact subsets of X and so (g,) is 8,-convergent to f, which implies
that u(f) = limwu(g,). On the other hand, (g,) is contained in G,, and converges to
f in the topology of Gy, Thus

u(f) = limu(gy) = lim'/g7 dm = (VR) /fdm.
This completes the proof.

Theorem 7.6 Let X be a zero-dimensional Hausdorff space and let A be the family
of all pairs (m,p) for which there ezists a Hausdorff locally convex space E such that
p € cs(E) andm € M, (K(X), E), where K(X) is the algebra of all clopen subsets of
X. Then the topologies 8 and (3, on Cp(X) coincide with the locally conves topology
p generated by the seminorms || - (N, ,, (m,p) € A.
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Proof :  As it is shown in the proof of the preceding Theorem, the space F =
S(K(X)) is p-dense in Cp(X). Also F is dense in Cy(X) for the topologies § and
Bo. In view of Theorems 4.15, 4.18 and 4.19, the topologies 3,, 5 and p coincide on
F'. Also, p is coarser than f,. Indeed, let (m,p) € A and

V={feG(X): [fllNm, <1}

Let r > 0 and choose 0 < ¢ < 1/r such that € - my(X) < 1. Theset Y = {z :
N p(X) > €} is compact. Moreover

Vi={feC(X):Ifll <7 Iflly <€}

is contained in V. In fact, let f € V1. If x € Y, then | f(2)|- Ny p(z) < e-mp(X) < 1,
while for z ¢ Y we have |f(z)| - Npnp(z) < re < 1. Thus || f||n,., <1,ie feV.

This, being true for each r» > 0, implies that V' is a J,-neighborhood of zero. Now
the result follows from Lemma 4.17.
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SUPERLINEAR CONVERGENCE FOR PCG USING BAND PLUS
ALGEBRA PRECONDITIONERS FOR TOEPLITZ SYSTEMS*

D. NOUTSOS! AND P. VASSALOS!

Abstract. This paper is concerned with the fast and efficient solution of n x n symmetric ill
conditioned Toeplitz systems T (f)x = b where the generating function f is a priori known and in
particular is real valued, nonnegative, having isolated roots of even order. The preconditioner that
we propose is a product of a band Toeplitz matrix and matrices that belong to a certain trigonometric
algebra. The underline idea of the proposed scheme is to embody the well known advantages that
each component of the product presents, when they are used alone at the same time which are
minimized their disadvantages. As a result we obtain a flexible preconditioner which can be applied
to the system Tn(f)z = b infusing superlinear convergence to the PCG method. The important
feature of the proposed technique is that it can be extended to cover the 2D case, i.e. ill-conditioned
band Toeplitz with Toeplitz blocks (BTTB) matrices. We perform many numerical experiments
and the results fully confirm the effectiveness of the proposed strategy and the adherence to the
theoretical analysis.

Key words. Toeplitz, preconditioning, trigonometric algebras, PCG

AMS subject classifications. 65F10, 65F15, 65F35

1. Introduction. In this paper we introduce and analyze a new approach for
the solution, by means of the Preconditioned Conjugate Gradient (PCG) method,
of ill conditioned linear systems Tz = b where T = T,(f) is a Toeplitz matrix. A
matrix is called Toeplitz matrix if its (¢, ;) entry depends only on the difference i — j
of the subscripts i.e. t; ; = t;—;. The function f(x) whose Fourier coefficients give the
diagonals of T, (f) i.e.

m

Tix=tin==— [ [fl@e U %z, 1<jk<n,

2 J_ .
is called the generating function of T,(f) and in the rest of the paper we will assume
that it is a priori known.

Such kind of matrices arise in a wide variety of fields of pure and applied mathe-
matics such as signal theory, image processing, probability theory, harmonic analysis,
control theory etc. Therefore, a fast and effective solver is not only welcome but also
necessary.

Several direct methods for solving Toeplitz systems have been proposed; the most
efficient algorithms are called “superfast” and require O(n log? n) operations to com-
pute the solution. The stability properties of these direct methods are discussed in [6].
The main disadvantage of these kind of methods is that in 2D they can not exploit
efficiently the Block Toeplitz structure of the matrices and as a consequence they are
far away from being characterized a near optimal choice as they need O(nm? lognm).

We focus on the case where the generating function f is real-valued continuous 27-
pericdic defined in I = [—, 7], where the associated Toeplitz matrix is a Hermitian
matrix.

*This research was co-funded by the FEuropean Union - European Social Fund (ESF) & National
Sources, in the framework of the program “Pythagoras I” of the “Operational Program for Education
and Initial Vocational Training” of the 3rd Community Support Framework of the Hellenic Ministry
of Education.

TDepartment of Mathematics, University of Joannina, GR45110 Greece. (dnoutsos@uoi.gr)

!Department of Informatics, Athens University of Economics and Business, GR10434 Greece.
(pvassal@aueb.gr)
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In the case where f is a positive function the matrix becomes a well-conditioned
Hermitian positive definite matrix. In addition, if f is also an even function, it
becomes a well-conditioned symmetric positive definite (spd) matrix. For this case,
preconditioners belonging to some trigonometric matrix algebra have been proposed to
achieve superlinear convergence of the PCG method. Circulant preconditioners have
been proposed by G. Strang [24], by R. Chan [7] and by R. Chan and M. Yeung [11]
for well conditioned spd systems. 7 preconditioners proposed for the same systems
by D. Bini and F. Di Benedeto [2] and by by F. Di Benedeto [13]. To cover the
well conditioned Hermitian positive definite case, Hartley prconditioners have been
proposed by D. Bini and P. Favati [3] and by X.Q. Jin [16].

It is well known that matrices that belong to any trigonometric matrix algebra,
when they are used as preconditioners, can not give superlinear convergence [17),[18].
Moreover, there are cases where the corespondent matrices are singular ones, as,
e.g., in the case where f is a nonnegative function having roots of even order and
the preconditioner matrix is chosen to be a circulant one of Strang type. In this
specific case the system becomes an ill conditioned symmetric positive definite one.
Problems with such kind of matrices arise in a variety of applications: signal and
image processing, tomography, harmonic analysis and partial differential equations.

Band Toeplitz preconditioners are ideal to cover this case of ill conditioned sys-
tems. They succeed in making the condition number of the preconditioned system
independent of the dimension n. First, R. Chan [8] proposed as preconditioner the
band Toeplitz matrix generated by the trigonometric polynomial g that matches the
roots of f. R. Chan and P. Tang [10] extended the previous preconditioner, to the
ones based also to a kind of approximation of f and finally, S. Serra Capizzano [21]
proposed the band Toeplitz preconditioner which is based on g that matches the roots
and also on the best trigonometric Chebyshev approximation of the remaining positive
part é.

Preconditioners based on 7 algebra have studied by F. Di Benedeto , G. Fiorentino
and 8. Serra Capizzano [14], by F. Di Benedeto [12] and by Serra Capizzano [22], while
w-circulant preconditioners have been proposed by D. Potts and G. Steidl [20] and by
R. Chan and W. K. Ching [9].

Finally, a mixed type preconditioner a product of band Toeplitz matrices and
inverses of band Toeplitz matrices, based on the best rational approximation of the
remaining positive part, has been studied and proposed by the authors in [19].

In this paper we study and propose as a preconditioner, a product of the band
Toeplitz matrix generated by g and matrices that belong to any trigonometric algebra
and correspond to an approximation of the positive part. The underline idea of the
proposed scheme is to combine the well known advantages that each of the components
of the product presents when it is used as a stand alone preconditioner. As a result
we obtain a flexible preconditioner which can be applied to the system T,,(f)z = b
infusing superlinear convergence to the PCG method. Convergence theory of the
proposed preconditioner is developed and an alternating technique is proposed in
case where convergence is not achieved. Finally, we compare our method with the
already known in the literature techniques.

The paper is organized as follows. In §2 we introduce the basic idea for the
construction of the aforementioned preconditioners and study their computational
cost. In §3 we develop the convergence theory in both cases of using band plus
7 preconditioners and band plus circulant ones. In §4 we propose and study an
alternating smoothing technique, for both cases, when the convergence properties
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studied in §3 do not hold. §5 is devoted to applications, to numerical experiments
and to concluding remarks.

2. Band plus Algebra preconditioners. Let f € Ca; be a 2m-periodic non-
negative function with roots zg,z1,...,z; of multiplicities 2k;,2ks,...,2k; respec-
tively, with ky + kg + -+ k; = k. Then f can be written as a product g - w where

l

(2.1) g(z) = H(2—2cos(:c—scz-))k"

i=1

and with w(z) > 0 for every z € [—, 7]
We define as a preconditioner for the system

(2.2) To(f)z=b

the product of matrices

(2.3) E7(f) = An(V)Tn(9)An (Vo) = An (W) T (g) An(h)

with A,, € {r,C,H}, where {r,C,H} is the set of matrices belonging to 7, Circulant
and Hartley algebra, respectively. We have put for simplicity h = /w.

It is obvious from the construction of K, that it fulfils the fundamental proper-
ties that each preconditioner must have, i.e the positive definiteness and symmetry
(Hermitian).

Although the idea of using as preconditioners for the system (2.2) a product of
band Toeplitz matrices with 7, circulant or Hartley ones is not new (see e.g [9] or
[23]), what we propose is more general and flexible in the sense that it can use as A,
any matrix belonging to {7,C,H}, can treat both symmetric and Hermitian systems
([23]) and can be efficiently extended to the 2D case.

2.1. Construction of the preconditioner-Computation cost. For the band
Toeplitz matrix T}, (g) things are straightforward. To construct A,(h) we use the
relation

An(h) = Qn - Diag (R(u™) - Q7
where the entries of the vector u™ are ul = g”—(-;——l), i =1(1)n and @, is the Fourier
matrix F,, for the circulant case or the matrix Re(F,) + Im(Fy,) for the Hartley case.

For the 7 case we have u} = 2, i = 1(1)n and Qn = /7 [sin(juf)]7;—1-

The evaluation of the function h at the points u™ requires the evaluation of the
function w and the computation of real square roots, which can be done by a fast and
simple algorithm based on “Newton’s Method” and is a of O(n) ops. In any case,
the above procedure does not incur in the total asymptotic complexity of the method
as it is implemented once per every n. The computation @ - v is performed via Fast
Fourier Transforms (or Fast Sine Transforms in the 7 case) and requires O(nlogn)
ops. Finally, the ‘inversion’ of T,,(g) can be done in O(nlogp + plogzplog%) ops,
where p is its bandwidth, using the algorithm proposed in [4] or even better in O(n)
using the multigrid technique proposed in [15]. So, the total optimal cost of O(nlogn)
is preserved per each iteration of PCG.
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3. Convergence Theory.

3.1. Convergence of the method: 7 case. We start with the case where
A, € 7. We will show that the main mass of the eigenvalues of the preconditioned
matrix

(3.1) (Tn(R)Tn(g)7n(h)) T (f)

is clustered around unity. Before we give the main results for this case we give a
definition and report a useful lemma.

DEFINITION 3.1. The set of the continuous functions f for which the modulus of
continuity w(f,8) (see [25]) is o(|logd|™1), is the Dini-Lipschitz cluss and is denoted
by C*.

LEMMA 3.2. Let w € C3 be a positive and even function. Then, for any positive
€, there exist N and M > 0 such that for every n > N at most M eigenvalues of the
matriz T, (w) — o (w) have absolute value greater than e.

Proof. See [23], Theorem 2.1. O

THEOREM 3.3. Let T,(f) be the Toeplitz matriz produced by a nonnegative func-
tion f in Cor which can be written as f = g-w, where g the trigonometric polynomial of
order k as it given by (2.1) and w = h? is a strictly positive even function belonging to
C*. Then, for every € > 0 there exist N and M > 0 such that for everyn > N at most
M eigenvalues of the preconditioned matriz (3. 1) lie outside the interval (1—e¢, 1+€).

Proof. We begin with the observation that the matrix 75,(f) can be written
(see [5]) as Tn(g)Tn(w) + Ly, where L is a low rank matrix. Taking into account
the specific form of Ly, which contains only nonzero columns at the first and last k
columns, we obtain that rank(L;) = rank(LT) = 2k and rank(L; + LT) = 4k. From
the close relationship between 7 matrices and band Toeplitz matrices we have that

Tolf) = 5 (Ta(9)Ta(w) + L1) + 5 (Ta(w)Talg) + LT)

((9) + La)Ta(w) + L1) + 5(Ta(w)(ra(g) + L2) + LT)

[N Y R

Tn(9)Tn(w) + éTn(g)Tn(w) + Ls,

where Ly and Lj are low rank symmetric matrices. More specifically, as L, has
nonzero elements only at the upper left and lower right corner, the factor Lo T, (w) +
T (w)L2 has nonzero entries only in the & — 1 first and last rows and columns, i.e
it is a border matrix. So, the rank of the matrix Lz is at most 4k. To study the
spectrum of the preconditioned matrix K7(f)™1T,(f) with K7(f)™* as in (2.3), we
consider the symmetric form of it T, = Tn(g) ™27 (k) 1T (f)7n(h) ~2Tn(g)~ 2, which
is similar to the first one. So

T = Talg) 7 (h) T f)rm(B) T (g)
- %Tn(g)'%mh)'1 (7 ()T (w) + Ton(w)Ta() + La) 1 (k) T (9) 2
- %Tn(g)—%Tn(g)m(h)*Tn(w)m(h)‘lTn(g)‘%

+ 5Ta(9) H 7 (A T )7 (h) 7 ()Ta(9) + Lg

T0(9) ™% (Tulg) — La)Tn () " T (w)rn(h) " Tn(g) ™%
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+ 2 T(g) bra(R) Ta(w)ra(h) ™ (Talg) ~ L) (o)™
1

= 5Tn(0) 7 (h) T T (w)7u () T Tfg) ™

Bl

+ Ly

+ 5 Tal0) B rn(W) I Ta ()W) Tal0)? + Ls,

where Lz, Ly and Ly are dense symmetric matrices of low rank, with rank(L4) =
rank(Ls) and therefore the rank of Ls is at most 8% — 4 (the rank of Ly plus twice
the rank of Ls).

From Lemma 3.2 we obtain that for the choice of ¢, > 0 there exist a low rank
(of constant rank) matrix Lg and a matrix E of small norm (|| E||2 < €), such that

(3.2) Tn(R) " Tn(w)mn (h) ™' = I + E + L,

where I is the n-dimensional identity matrix. Hence

= 1 1 EcR | oo i
Tn = "Q"TH(Q)E(I +E+ LG)Tn(Q)_Z at "Q'Tn(g) # (I + E =R LS)Tn(g)2
1 1 1 1 1 1
+Ls =1+ 5Ta(9)2 ETn(9) ™% + 5Tn(9) 2 ETn(9)® + L,

where L is a symmetric low rank matrix with its rank being no greater than the sum
of the rank of Ls and the double of the one Lg.

The proof of the main issue that ‘fn has a clustering at one, is reduced to the
proof that for every e¢ > 0, there exists e;, > 0, with ||E||2 < e, such that all the
eigenvalues of the matrix

[s™

1 1 1 1 1
A = §Tn(g)§ETn(Q)_7 o ’an(Q)_EETn(Q)

belong in the interval (—¢,¢). Equivalently, since A, is symmetric, we have to prove
that both matrices €I + A, and e — A, are positive definite matrices.

First, we prove that ¢l + A, is positive definite. This is equivalent to proving
that

Ta(o)H (el + A)Tal0) = eTalo) + 5Tal0)E + 5ETal9)

is a positive definite matrix. For this, we consider a normalized vector z € IR",
(Jlzll2 = 1) and take the Rayleigh quotient

1 1
r=ex? Tn(g)z + §mTTn(g)E$ + EJ:TETn(g)m = exT Ty (g9)z + 27T (g) Ex.
The norm of the vector y = Fz is given by
€= llyllz = | Bzllz < || Ell2]l]l2 < er-

Let z be the normalized vector of y, so y = éz, then the Rayleigh quotient takes the
form

(23] r = ex? Tn(g)z + €27 T (g)2.
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The second term of (3.3) takes the minimum value for z being the normalized vector

of —T(g)z. So,

3 tgmTTn(g)zsc
1T (g)x]l2

= ¢ Ta(9)¥allz — enl|Tulo)allz 2 €| Tulg) a2

— T (9)} el Ta(9) alle = (€ = enl Ta(@)Ell2) 1T (0) .

1T (g) 13

> €|[Tu(g) |2 — M\ Tnlo)zllz

r>exTTy(g)z

Since the operator T'(g) is bounded, we can choose the value of €5, to be such that

(3.4) ¢ > enl|Tul9) % |l2,

so that the Rayleigh quotient r will be positive since |||z = 1. This holds true for
every choice of x, so the matrix el + A, is a positive definite matrix.

To prove that the second matrix el — A, is positive definite we follow exactly the
same argumentation and we end up with

r = ex? Tn(g)z — ézT Th(g)z.

in the place of (3.3). Then, the second term takes its maximum value for z being
the normalized vector of T}, (g)z. After that, the proof follows the same step and the
same conclusion is deduced. O

We will prove now the important feature that our preconditioner fulfils and leads
to superlinear convergence of PCG. The clustering of the eigenvalues around 1 has
been proven in Theorem 3.3. So, we have to prove that the outliers are uniformly far
away from zero and from infinity. For this we will study Rayleigh quotients of the
preconditioned matrix:

2F K2 (A Kl e T T, (f)z

i T—1 e — i n = i —_————
(3.5) Amin (K7 " Tn(f)) mlelgﬂ xTg zleraj'f{;“ T KT (f)=
and

TEL () ATU(NKL(f) iz T To(f)z
~ max KTVlTn = & i o L = s 3

85I ) = 2, T et TR ()2
Thus, we have to study the range of the Rayleigh quotient

2 Th(f)z _ T Tu(f)=z _ 2T Tu(f)x eT'Tlg)s

fTKz(f)x 2T Tn(g)a(Wz — 2TTa(g)s 2 a(R)Tn(g)ma(h)T

It is well known that the range of the first Rayleigh quotient is contained in the range
of the function w = § which is positive and far from zero and infinity. Therefore, we
have to prove that

limsup su
n—«oop xeﬂgﬂ xTTn(h)Tn 9 Tn(h)z



We will prove only the first inequality of (3.7). The proof of the second one is similar.
This is obtained from the observations that

zTT,(g)x 2T 7 (h)Tn(9)Tn (R)z
. — 1. . f 3 L n L 3
11711.1’1—48029 :z:E:Engﬂ ITTn(h)Tn (Q)Tn(h)fc 205 %i‘lrr—ivgg :n]Er.lﬂg"' wTTﬂ (Q)CU ’
and
2T 1 (W) T (g) () 2 Tn(9)z
i S = liminf ; :
L g 2T Tn(g)x e o (A=) Tn(g)mn(h ™)

So, the proof of the second inequality of (3.7) is equivalent to the proof of the first
one with the function A~! in the place of h.

By inverting the ratio of the first inequality of (3.7) it is equivalent to proving
that

el 7 (R) T (9) T (h)z
3.7 limsup su ° < 00,
] n—toop::e}jgﬂ =TT, (g)z
so, we have to study the ratio
o7 (h) Tn(g)Tn (h)x
(3.8) P o= AT 0% \

It is well known that the band Toeplitz matrix T,,(g) is written as a 7 plus a
Hankel matrix

(3.9) Tn(g) = Ta{g) + Halg),
where H,(g) is the Hankel matrix of rank 2(k — 1) of the form
(3.10) Hu(g) = En(9) + Enlg)",
with
gz g3 - gx - - 0
g3 . . :
(3.11) Eq(g) = gk
0 e - e 0

and E,(g)¥ is obtained from the matrix E,(g) by taking all its rows and columns in
reverse order. The entries g; are the Fourier coefficients of the trigonometric polyno-
mial g (g(z) = go + 2g1 cos(x) + 292 cos(2z) + - - - + 2gx cos(kz)). In the special case
where the root is 0 of multiplicity 2k we have that g; = kgfi ) . It is obvious that
for k = 1, Ha(g) = 0, which means that T,,(g) (the Laplace matrix) is a 7 matrix
and the problem is solved. In case where k = 2 we have that H,(g) is a semi-positive

definite matrix of rank 2 with just ones in the positions (1,1) and (n,n) and zeros
97



elsewhere. In case k > 2, the matrix H,(g) becomes indefinite. We denote by A the
(k—1) x (k—1) matrix formed by the first &£ — 1 rows and columns of E,(g):

g2 03 Gk
(3.12) a=| % .
g 0 - 0

and by AF the matrix obtained from A by taking all its rows and columns in re-

verse order. For an n-dimensional vector z we denote by z(™) and by z(™) the

m-dimensional vectors formed from the first and last m entries of z, respectively.
Recalling ratio (3.8), we get

o .'ETTn(hj)gr\EQ;Tn(h)m . mTTn(h)T‘n(ET)_‘TnEh33+$:Tn(€1))1fn(9)Tn(h)z
T =1 Tn(g)z - n +27 Hn(g)e
(3.13) T T L A

2T, (g)z4+3 - DT AR o -DT AR (k1)

LemMA 3.4. Let = be a normalized n-dimensional vector (||z|s = 1) and the
sequence of the vectors T5~1 is bounded i.e. 0 < ¢ < || V|y < 1 for all n or the
sequence of the vectors z*=1 is bounded i.e. 0 < ¢ < ||z~ V|| < 1 for alln , with ¢
being constant independent of n, then the ratio ro is bounded.

Proof. The assumption 0 < ¢ < |2 Vs <1o0r 0 < e < |z V|2 < 1 means
that |Z¢~V|s = O(1)N 2() or |z~ V||, = O(1) N £2(1), respectively. Without loss
of generality, we suppose that |Z*~1) ||, = O(1) (N 2(1), the proof for the case where
51|l = O(1) N 2(1) being the same. It is easily proved that there is a constant
integer m independent of n such that ||z = O(1)N2(1) end y® |2 = o(1)
where y*) is the k-dimensional vector of the entries of z followed by the vector (™),
This is true since otherwise there would be an infinitely large integer m, depending
on n, such that every block of size k of the vector T™ should have constant norm
independent of 7. The latter is a contradiction since then ||Z{™]|; — co. Since both
the numerator and the denominator of the ratio in (3.8) are bounded from above,
to prove that this ratio is bounded it is equivalent to prove that the denominator
7T, (g)z is bounded from bellow far from zero for z of unit Euclidean norm. For
this, we write the matrix T, (g) and the vector z in the following block form:

ngg) | G|o Zm)
T’n(g) = G{’] ‘ Tn—m(g) y L= yz L]

where GG is an m x k& Toeplitz matrix with nonzero entries only in the & diagonals in
the left bottom corner. We take now the denominator:

- Twig)| GO zi™ -
Tz = @™ @) | e T T | =3
(3.14) 0 nem z

(k)

Since T;,(g) and T, —.n(g) are positive definite matrices the first and the third terms
in the sum of (3.14) are both positive numbers. The minimum value of the first term
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depends only on m, which is constant, and is of order nTlEE independently of n far from
zero. The third term depends on n and may take small values near zero. The second
term is the only one which may take negative values, but

i T i T v
22" Gy®)| = 2|z Gy |; < 217 2]|Gl2lly Pl = o(1),

since [[y®|l2 = o(1) and the other norms are constants. As a consequence, the

first term is absolutely greater in order of magnitude than the second one, which

characterizes the bounded behavior of all the sum, and our assertion has been proven.]
It remains to study the quantity r, for vector sequences z such that

(3.15) IZ™l2 = o(1) and 2™l = o(1)

for each constant m independent of n. First, we write the vector z as a convex

iy

combination of the eigenvectors v;s of 7 algebra, with entries (v;); = )

n+1 sin(25%

T

(3.16) = chi, Z lei|? =
i=1

i=1

We denote by D the denominator and by N the numerator of the ratio r, of (3.13).
So the denominator is given by

E: Ct’UTTn(Q) E:L 1 civ; + Ez;nl Ci’U;‘:FHn(g) Z?:l CiUy
D g+ Y e CzUTH n(9) 325 Civs JTAR
= 21 ]! 1.91+Zz— Cl AZ: lcv1+zl—lc'- A Z 1C'U

while the numerator is given by

N E'—l Cciu; Tn(hgg) Z;., 1C1'Ua+2; 1‘31'U Tn(h')H (Q)Tn( )
(3 18) Z -1 GiVi = Z:L 1 Eh‘zzgi +21 1 Cih‘ U H ( )Zn clh Vi
' Z?—l ?hzg‘l- mE 21 1 c;h; AZE 1 C-Lh- vy
Yo TARYE R

D
(3.17)

Il

Il

I

+

where h; = h(:Z5) > hmin > 0and g; = g(;Z5) = (2— 2cos(n+1))k = (25in(ﬁ))2k.

For simplicity, we have put 7; and v, instead of U(k Y and yt- i }, respectively. The
first sum in both numerator and denommator is positive and we call it 7-term, since
it corresponds to the Rayleigh quotient of a 7 matrix. We call the other two terms,
corresponding to the low rank correction matrices A and A, correction terms. The
correction terms may take negative values. It is obvious that the r-terms of the nu-
merator and the denominator coincide with each other in order of magnitude for all
the choices of the vector z, since

Zczhgg-,, = h2ZC gi, 0<h oS ":" < h'max < 00.

So, if the 7-terms are greater, in order of magnitude, than the associated correction
terms, then r, is bounded. The only case where 7, tends to infinity is that where the
correction terms in the numerator exceed, in order of magnitude, either the associated
7-term and/or that of the denominator. We will try to find such cases, by comparing
the 7-terms with the correction terms. Since the correction term corresponding to A%
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behaves exactly as the one corresponding to A, for simplicity we will compare only
the 7-terms with the correction terms corresponding to A. In other words we consider
that [z AZ| is greater than or equal to |7 ARz|, in order of magnitude. Given {N.}
with N = {1,2,...,n} we define the sequence of subsets {5, } such that

1) SpC Np¥n

ld) 2) Vin sequence to which ix € Sy, we have limpco & =0 (i, = o(n)).

Accordingly the complementary sequence of subsets {Q,} is defined as
(3.20) @n= Ni, \:Sn:

It is obvious that the border of the above subsets S, and @, is not clear, but this
does not present any problem in the analysis that follows. However, we have to be
careful to take only sequences belonging to o(n) when dealing with {S,}. We write
the vector = as the sum z = x5 + xg where

(3.21) Tg = Z C;Vy, Tg = Z CiV;.

i€ESpy 1E€EQn

We denote also by Ts = 3.5 T, zg = Ziesn Cili TQ = ) ieq, Ci¥i and g =

Zz‘eQn ¢;v;. In other words we separate the eigenvectors into those that correspond to

“small” eigenvalues (0(1)) and those that correspond to “large” ones {O(1) [ £2(1)).
‘We consider the sequences and

(3.22) {gntn =1 Z ct}n and {sn}n = {Z ¢}

1€EQn iESy

LEMMA 3.5. Let z be such that [Z* Y|z = 0(1) and |z*V|y = o(1) and
the sequence {gn}n of (3.22) is bounded, i.e. 0 < ¢ < g, < 1, then the ratio ry is
bounded.

Proof. In this case we have

2T (9)z = zEmm(9)zs +z3Ta(g)Tg = Z cigi + Z cigi~ >0,
1€Sn i€Qn

since the eigenvalues of the second sum are bounded from bellow. On the other hand
we have

50T Az < AL |74 D)3 = o(1),

since |Z%*~1||; = o(1). We get the same conclusion for the term ig(k_l)TAg(k'l)L
So, the 7-term is the dominant term which is bounded from bellow. Since the numer-
ator is bounded from above, r, is bounded.O

LEMMA 3.6. Letz be such that |T*~ |y = o(1) and ||z*~ 1|z = o(1) and for
the sequences {Sn}tn and {gn}tn of (3.22) there hold lim, o0 8 = 1, liMy—oo g = 0
with ||Tgllz = o (qn)%), then the ratio v is bounded.

Proof. We suppose that the sequence {g,}, tends to zero monotonically, since
otherwise it can be split into monotonic subsequences.

The 7-term gives:

(3.23) eTra(g)z= > o+ > clgi
i€Sn 1EQR
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while the correction term gives:
(3.24) zTAT = (Ts +Tq) AFs +To) = TzATs + 25 AT + THATg.
For the vector Zg we have

Zallz =1 Y evile < D laillmlla< | D & dolmdz) ~ (gn)?,

i€EQn 1€Qn i€Qn iEQn

since ||T;]|3 ~ %, for all i € N,, and the cardinality of Q. is n — o(n) ~ n. So,
n

IZalls = O ((g2)F). Let [Zalls = o ((an)?), then [85AT0| < 1All2]ZalF = olgn),
which means that the second sum of (3.23) exceeds the last one of (3.24) so,

(3.25) zhTa(g)zg = Y o +THATg + 250 g ~ gn-
iEQn

In the case where ||Zg|lz ~ (gn)? we consider the quantity ngn(g):cQ and normalize
the vector zg to the vector £g5 by multiplying by a number of order (qn)‘%, such
that ||£g|lz = 1. If we consider the vector &g in the place of z, which means that
there are no vectors of indices belonging to S, in the convex combination, we get
that 3.0 ¢? = 1 for the new coefficients ¢;s. Since ||Tgllz ~ (gn)® we obtain that
|Zg|l2 ~ ¢ > 0. From Lemma 3.4, by replacing Z¢ in the place of z, we obtain that
20Tn(g)2q is bounded from bellow. If we come back to the quantity x5 Ta(g)zg by
dividing the vector £g by the same number, we obtain the validity of (3.25). For the
estimation of the associated term z}7,,(h)T T, (g)7(h)zq of the numerator, we follow
exactly the same steps in the proof by considering the vector 7,(h)z in the place of
z. So, we obtain

(3.26) 2570 (R) T Tnlg)Tn (R)3g ~ TGTa(9)TQ ~ Gn-

Under the last assumption,||Zg|ls = o ((qn)%), the remaining terms of (3.24)

TLAZs and 275 AZq are both absolutely smaller than g, in order of magnitude.
Exactly the same happens with the corresponding terms of the numerator. So, the
order of the denominator of r, is just the order of Ei(—_‘ 5. c2g; if it exceeds g, or
gn otherwise, while the one of the numerator is just the order of > ;cg cZhg; if it
exceeds g, or ¢, otherwise. In any case the numerator and the denominator coincide
with each other, meaning that r; is bounded.0

A useful definition is given here.

DEFINITION 3.7. A positive and even function h € Can is said to be (m,p)-
smooth function if it is an m times differentiable function in an open region of the
point p € (—m,m) with h0)(p) = 0,7 = 1(1)m — 1 and R™) (p) being bounded.

LEMMA 3.8. Let z be such that |T*~ 1|y = o(1) and |z ~V|z = o(1) and for
the sequences {sn}n and {gn}n of (8.22) there hold limy oo 57 = 1, limp oo gn =0
with |Ts|le = £ ((qn}%). Let also that h is a (k — 1,0)-smooth funciion. Then, the
ratio T4 45 bounded.

Proof The proof follows exactly the same steps of Lemma 3.6 to obtain the same
results until (3.26). In the sequel, we use the assumption that the function & is a
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(k — 1,0)-smooth function. By taking the Taylor expansion of h;s about the point
zero we find

ki .
(38.27) s ”’”( +1) hﬂ*‘m—((’}“)) WD),  &e (o, n’;l)

Thus, the vector corresponding to Zg in the numerator is given by

i Vk—1 k-1
Z h.,;ciﬁi = z (hg + -(-(%h(k U(fi)) iUy = hg.’);‘g-!- Z (n+ 1) mciﬁi,

1€Sn i€Sn 1ESn
BN i
where 7; = = tE€ Sn, bounded. The correction term of the numerator
corresponding to A, is Z = 1, hic;0T A Y 1, hiciT; which takes the form
Z = g, hicd; AZ%ES’ hicWi +23 5 hici¥; /_\Zleg hiciv;

3.28
( ) -+ E‘LEQ hiciT, TA zzeQ hicU; = Zq + 275 + Z3.

We have proven that the third term Zj3 coincides with ¢,. The first term gives

Z;

B a2 \ T

0Z5 + D ies, (n+1) 7:C:T; )A
hoZg + s, (n"_H mcmi)

= hOmSA$5+2hgm5AZZEs ( ’L)k lvmztv2
b Sies, (35) medTAT s, (32

while the second one gives

X

(3.29)

) i c’iﬁi 1

Zy
(3.30)

y k-1
(hgfg +2 ies, (Tf—jl) CiT; ) AZtEQ hiciU;

L il
hoTEA D ico. e+ 3 cs (25 mcﬁ?& Vo hiciT;.
Qn €5, \ n+ €Qn

k-1
First we will estimate the quantity q = || ZiESn (;—L) 7:¢iTi||2. From 1 € S, and

k=1
the fact that 7; = (,/n—Jrl sin (#))3=1 we get that ||7;]]2 ~ ;’%- So,

ookl ;K

Sies, nilleid (25) " 19l ~ 2 Ties, lail (2)
(3.31) \
Zz

S\ 2k 3 1
2 (Tiesn D) (Ties, & (D))" ~ /22 (Ties, ai)?,

where n € (min; |7;], max; |n;|) and 75, means the cardinality of the set S,. Since

(A

1
#S" = o(1) we get that the quantity (Z{esﬂ c?g;)?, which is just the square root of

k=1
the 7-term, exceeds || 3 ;g (Fﬁ) n:¢;T;||2 in order of magnitude. Coming back

to the terms Z; and Z; of the numerator we deduce that the order of the first term
of Z; in (3.29) is

|h5T5 AT s| < hgllTsl31Allz = 2(gn),
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which coincides with ZLAZs of the denominator in (3.24). On the other hand we can

prove that |[T5AZs| ~ ||Ts||3 by taking into account the proof of Lemma 2.6 of [18].
In that work it was proved that
251n (#) T
__TA ; _ -
zi;(0), 0 e i,J € Sn

n+1

where

. L 2k—4
éﬂzﬁj(e):”( k-2 )

TFinally, we obtain that
2 2'26
EE[.\EES Sn:_ Z Z cicizi; (0 ot )2(6),
1 1ES, JESn
where
2
2 2%k —
0= (32 ) B R o= (3) () =0
1€S, jESR i€ESy

By applying the same considerations to the quantity ||Ts||3, after a simple analysis,
we have
2sin%(0)

— y(6),

IZs3 =
where
(k — 2L~1
—_ > 0.
lim y(6) = E;zq 0

From the relations above we conclude that the quantities T4 AZs and ||Ts||3 have the
same order of magnitude.
The order of the second term of Z; in (3.29) is

k=1
2hoTEA Z (n+ 1) N:iC;V;

1ESn

< 2ho||Zs|2l|All2

. k—1
] (L e
n+1 e

i€8Sn

= [[Zsll2 x 0 (Z cfgz-)

i€5,

2
1
2

This term is less than the first one, in order of magnitude, if ¥, c?gi = O (|[Zsl13)
while it is less than the corresponding 7-term, in order of magnitude, if 3, g c2g; =

2(|zs||3). In any case it does not play a role in the order of magnitude of the
numerator. We arrive at the same conclusion regarding the order of the third term of
Z; in (3.29) which is o (ZtES cz gz)

For the terms of Zy in (3.30) we first estimate the term HzaeQ hiciT; .

1
2 2
gy e o 3
ST hiew|| €Y kel < | Y SRl |~ (an)?
1€Qn 5 1€EQn 1EQn 1€EQnA
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Therefore, the order of the first term of Zs in (3.30) is given by
hoTg A Z hiciTi| < hol|Zs|2]|All2 z hicits|| = ||Zslla x O ((Q‘n)%) ;
i€Qn i€Qn 3

which is less, in order of magnitude, than Z% AZs in the denominator of (3.24). The
order of the second term of Zs in (3.30) is given by

. k=1 4 k—1
i ) _ _ i
Z 7T A Z hiei;| < Z ( ) nics|| 1Al
1ES, (TL+1 1€EQn 1E€Sn w1 2
3
X Z hiciﬁf =i (Z C’L?gi) x 0 ((Qﬂ)%> 1
1EQn 9 €8,

which is less, in order of magnitude, than the same term Z5AFs, if Yiies, c2g; =
O (llzs||3) while it is less than the corresponding 7-term, in order of magnitude, if

Ties, 29 = 2 (Is]3), since Zsllz = 2 ((gn)F). O

THEOREM 3.9. Let f € C3. be an even function with roots x1,xa,...,7; with
multiplicities 2k1, 2k, . .., 2k, respectively, g be the trigonometric polynomial of order
k= E;d k; given by (2.1), that rises the roots and w be the remaining positive part
of f (f = g-w). If the function h = Jw is a (k; — 1,z;)-smooth function for all
J = 1(1), then the spectrum of the preconditioned matriz KT (f) " To(f) is bounded
from above as well as from bellow:

¢ < Amin (K7 (£) T T (f)) < Amax (K7 (F) 7' Tn(f)) < C,

where ¢ and C' are constants independent of the size n.

Proof. For the case of one zero at 0, Lemmata 3.4, 3.5, 3.6 and 3.8 cover all possible
choices of the vector z € IR™ to obtain that the Rayleigh quotient r is bounded. The
case of one zero at a point different from 0 is simple since it can be transformed to zero
by a shift transformation of the interval [—m,7]. The generalization to more roots is
straightforward. The main difference concerns on the definition of the sets S, and @,
of (3.19). Under the assumption of | roots z;,za,...,%;, we give the new definition
of the above sets

1) S5, C N,¥n ‘
(3.32) 2) Vin sequence to which iy € Sy we have limy,_ oo 2 —2; =0
(in —nz; =0(n)), §=1,2,...,L

and
(3.33) Q= N NS,

After that definition, Lemmata 3.4, 3.5, 3.6 and 3.8 work well to obtain our result
that r, is bounded, which completes the proof of the Theorem. O

As a subsequent result we have that the minimum eigenvalue of [K7(f)] 1T.(f)
is bounded far away from zero. Hence, from the theorem of Axelsson and Lindskog
[1], it follows immediately that the PCG method will have superlinear convergence.
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We have to remark here that if the smoothing condition of the function h does
not hold, the Rayleigh quotient r;, may not be bounded and consequently the PCG
method may not have superlinear convergence. The worst case, where we get the
maximum value of rg, is that when choosing £ = zg. In that case the denominator
coincides with n—% and so for the numerator to be of the same order the (k — 1,0)-
smoothness of the function h is necessary. Otherwise, if h is a (k — 2,0)-smooth
function, which is the best possible choice, we deduce that the numerator coincides

with F%—_l As a consequence, rp tends to infinity with a rate coinciding with n.

3.2. Convergence of the method:Circulant case. For circulant matrices, in
order to show the clustering of the eigenvalues of the preconditioned matrix sequence

(3.34) (Cr(R)Tn(9)Crn(R) 1 T (f)

around unity, we first remark that although a band Toeplitz matrix and a circulant
one do not commute, they very nearly have the commutativity property since

rank(Th(g) - C — C - Tu(g)) < 2k,

where k is the bandwidth of the band matrix and which is obviously independent of
the dimension n of the problem. We will show that the main mass of the eigenvalues
of the preconditioned matrix (3.34) is clustered around unity. Before giving the main
results for this case, we report a useful lemma.

LeEmMMA 3.10. Let w € C3,. be a positive and even function. Then, for any posilive
€, there exist N and M > 0 such that for every n > N at most M eigenvalues of the
matriz C;71Tn(w) have absolute value greater than e.

Proof. See [23], Theorem 2.1 (The proof for circulant case is just the same as the
one for 7 case). O

THEOREM 3.11. Let Tn(f) be the Toeplitz matriz produced by a nonnegative
function f in Cor which can be written as f = g-w, where g is the even trigonometric
polynomial as is defined in (2.1) and w = h? is a strictly positive even function
belonging to C*. Then for every € > 0 there exist N and M > 0 such that for every
n > N at most M eigenvalues of the preconditioned matriz (8.34) lie outside the
interval (1 — e, 1+ ¢€).

Proof. We follow exactly the same steps and the same considerations as in the
proof of Theorem 3.3 for the T case, with the only difference being that the matrices
Cn(g) and C,(h) replace 7,(g) and 7,(h), respectively. First we obtain that

Tn = 3Ta(9)2Ca(h)Tu(w)Cn(h) " Tulg)~
+ %Tn(.g)_icn(h)ilTn(w)Cn(h)_lTn(g)

1
2
1
2

3.35
(3-35) + L,

with Ls being symmetric and a low rank matrix (of constant rank). It is noted
that we have used the same notation T}, for the associated symmetric form of the
preconditioned matrix.

From Lemma 3.10 we obtain that for the choice of ¢; > 0 there exist a low rank
(of constant rank) matrix Lg and a matrix £ of small norm (||E||2 < €3), such that

(3.36) Cr(h) ' (w)Cr(B) ™ = I + E + L.

Consequently, we obtain the relation

(ST

A 1 1 1 ok
To =1+ 5Tu(9)? BTa(9) ™2 + 5 Tul9) FETa(9)? + L,
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which is nothing but relation (3.3) for the T case.

After the latter manipulations, the proof follows step by step the one given in
Theorem 3.3 the same result is obtained. O

As in the case of 7 matrices, we will prove the important feature that our pre-
conditioner satisfies the and leads to superlinear convergence of PCG.

The clustering of the eigenvalues around 1 has been proven in Theorem 3.11. We
have to prove now that there does not exist any eigenvalue, belonging to the outliers,
that tends to zero or to infinity. For this we will study Rayleigh quotients of the
preconditioned matrix, as in the 7 case. It is easily proved that the previous analysis,
from relation (3.5) to relation (3.7), for the 7 case, holds also for the circulant case
by simply replacing 7, (h) by C,(h).

Therefore, we have to prove that

zTCr(R)Tn(9)Cr(h)z
: Iv ™ n T
(3.37) LS xséuﬂgn ST (g) < 00

For this, we have to study the ratio

_ A7 Ca(W)Ta(g)Culh)z.

(3.38) Tz 2T ()

It is well known that the band Toeplitz matrix T),(g) is written as a circulant
minus a low rank Toeplitz matrix

(3.39) Tu(g) = Cnlg) — Tn(g),
where Ty, (g) is a Toeplitz matrix of rank 2k of the form
(3.40) Tr(9) = Jn(g) + Ju(g)”,
with
] TP gk aie g2 g1
: : o
(3.41) Jnlg) =] : a |
0 --- e 0

where the entries g; are the Fourier coefficients of the trigonometric polynomial g
(9(x) = go+2g1 cos(z) + 292 cos(2z) +- - - + 2g cos(kz)). It is obvious that Ty (g) is an
indefinite matrix, while C,, is a semi positive definite one. We define by A the k x k
matrix formed by the first k& rows and the last & columns of J,(g):

g 92 @
(3.42) A= 0 B g2
0 o 0 g
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We use the same notations T™) and z(™ for the first and the last m-dimensional
blocks of the vector z, respectively.
Recalling ratio (3.38), we find

= 2T Cn(h)Tn(9)Cn(h)z _ sTCa(hICH(9)Cn(R)z—2T C(h)Tn(9)Ca(h)z
(3.43) T T Th(g)z T 2TCn(g)a—2TTy(g)r _
’ _ T Ch(hg)z—zTCa(R)Tn(9)Cnlh)z _ =T Cn(h?g)z—z Cn(h)Tn(g)Cn(h)z
T ZTCh(g)z—z M T Az —g(TATZ(R) T T Cp (g)z—20) T Az(R) )

LEMMA 3.12. Let = be a normalized n-dimensional vector (||z|lz = 1) and the
sequence of the vectors T*) is bounded ie. 0 < ¢ < [|Z ™2 < 1 for all n or the
sequence of the vectors (%) is bounded ie. 0 < ¢ < H;c_(k)Hz < 1 for all n , with c
being constant independent of n, then the ratio v, in (5.43) is bounded.

Proof. The proof follows the same steps of the one of Lemma 3.4 O

It remains to study the quantity r, for vectors x such that

(3.44) Iz 2 = o(1) and Iz ]2 = o(1)

for each constant m independent of n. First, we write the vector z as a convex

combination of the eigenvectors v;s of circulant algebra, which are the Fourier vectors
. . 2(i=-1)(F—-1)r
with entries (v;); = —1\5&‘ n

we are interested in real vectors z. Without loss of generality, we assume that n is
even. It is easily seen that only the vectors vy and vz are real vectors while all the

. The eigenvectors v; are complex vectors while

others are complex ones, where v,_;41 is conjugate with v;11, i=1,2,...,5-1. To
form the real vector z, we have to chose real coefficients ¢;s in the convex combination
with Cp—i+1 = Ci41, 1= 1, 2, ey _2:-1_. -1 SO,

n n
(3.45) T = U+ DR, U+ Cp g + 2, V)

= v +2) %, ciRe(w) +cgpavgya,
where ¢3 +2) 2 ,¢2 + c2%+1 =1 and Re(v;) being the real part of v;, with

Lcos (Q(z —-1)(7 — l)w) ‘
vn n
For simplicity, in what follows we write the convex combination in the form =z =
> civg, but we will have in mind that the coefficients c;s are as they are described
in (3.45).

As in the T case we symbolize by D the denominator and by IN the numerator of
the ratio r, of (3.43). Therefore, the denominator is given by

¥ = E:-Ll CiU?Cn(Q) Z?=1 Civ — 21;1 CiU?Tn (9) Z?:l City
n e n
(347) - z;:l cggi - Zi:ﬂ:‘l. Ciwg‘g:”(g) ;i:l Civi
= >lia1 cggi =23 el A

while the numerator is given by

N = Z%l Ci“?cn(hjg) S €% — Yoy esv] Co(R)To{9)Cn(h)
(3.48) ¥ 3 ngtny=3 0 othi =37 sahul (g1} et
= Y. Ghlg—2) 0 eh@lAY cihy,,

where f?,i = h(@) > hmin > 0 and g; = g(‘l(’%lﬁ) =(2- 2cos(2("—:11)1))’“ =
(2 sin((—t_Tl)Ti))%. For simplicity, we have put 7; and v, instead of ?Jgk) and ygk),
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respectively. The first sum in both the numerator and the denominator is positive and
we call it circulant term, since it corresponds to the Rayleigh quotient of a circulant
matrix. We call correction term, the second term which corresponds to the low rank
correction matrix A. It is obvious that the circulant terms of the numerator and the
denominator coincide with each other, in order of magnitude, for all the choices of
the vector z, since

n n
Zc?hfgl = h2 Zcfgi; 0< h'min < il < hmax < 00.
i=1 =1

Thus, if the circulant term is greater in order of magnitude than the associated cor-
rection term, then r, is bounded. The only case where it tends to infinity is the one
in which the correction term in the numerator exceeds, in order of magnitude, that
of the associated circulant term as well as the denominator. We will try to find such
cases, by comparing the circulant term with the correction one.

In analogy with the 7 case we define the sequences of subsets {S,} and {Q,} as
follows

1) S. C N.Vn

(3.49) 2) Vin sequence to which 4, € Sk we have limp_o & =0,
or limy_ e 2552 =0,
(3.50) Qn = Ni\ Sn.

We use the same notations for the vectors zg, zg, Ts, zg, To and Zg, and
consider the subsequences {gn}n = {Zicq, ¢ }n and {sn}n = {F;cs. Fln-

LEMMA 3.13. Let x be such that [Z®)||y = o(1) and |z®|2 = 0(1) and the
sequence {gn }n is bounded, i.e. 0 <c < g, <1, then the ratio vy is bounded.
Proof. As in the T case

T Cn(g)x = 25Cnlg)zs + a:gCn(g)mQ = Z ctg; + Z clgi~c >0,
1ESy 1E€EQn

since the eigenvalues of the second sum are bounded from bellow. On the other hand
we find

77 Az| < |A]l2)Z]2lizll2 = o(1),

since we have proven that both ||Z||z = o(1) and ||z||2 = o(1). Hence, the circulant
term is the dominant term which is bounded from bellow. Since the numerator is
bounded from above, r, is bounded.O

LEMMA 3.14. Let z be such that |[T®)|z = o(1) and |lz®|; = o(1) and
for the sequences {s,}n and {gn}n there hold lim, oo 8n = 1, limy .00 g = 0 with

IZgllz =0 ((qn)%) and ||zglla =0 ((qn)%), then the ratio v is bounded.

Proof. We suppose that the sequence {gn}» tends to zero monotonically, since
otherwise it can be split into monotonic subsequences.
The circulant term gives:

(3.51) T Cnlg)z =) g+ D cas,
1€85n 1€Qn
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while the correction term gives:
(3.5287 Az = (Ts + Tq) T Alzs + zg) =TsAzg +T5Azg + Tolzg +ThAzg.

For the vector sequences Tg and zg we have

1

2

e e - s 1
IZallz =11 > e@illa < Y leillmilla < [ > DoImlE |~ (gn)?,

1€Qn 1€Qn 1EQn i€Qn

wap=

since |[7;]|3 ~ £, for all i € N, and the cardinality of Qn is n — o(n) ~ n, while

1 1
z 2z

lzgl =1l D cuglle < D lalllwlla < | D ¢ Solwlg ] ~(gn)?,

1€Qn 1EQn 1EQn 1EQn

for the same reason. So, |Tglz = O((qn)%) and |lzgl: = O((qn)%) . Let

IZallzllzglla = 0(g:), then [F5Azg| < [|All2]|Zgll2llzoll2 = o(gn), which means that
the second sum of (3.51) exceeds the last one of (3.52) so,

(3.53) e5Talg)zg = ) | cioi — 285020 ~ gn-
1€EQn

In the case where ||Tgll2 ~ (lzgll2 ~ (g.)% we consider the quantity t5Ta(g)zq and
normalize the vector zg to the vector £ by multiplying by a number of order (qn)*% ,
such that | £g|lz = 1. If we consider the vector Zg in the place of z, which means
that in the convex combination we do not have any vectors with indices belongin

to Sp, we get that ZiEQn ¢? = 1 for the new coefficients ¢;s. Since ||ZTgllz ~ (gn)?
we obtain that EE'Q ~ ¢ > 0. From Lemma 3.12, by replacing Zg in the place of z,
we obtain that :T:ng(g):?:Q is bounded from bellow. If we come back to the quantity
mng(g)xQ by dividing the vector Zp by the same number, we obtain the validity
of (3.54). For the estimation of the associated term mECn(h)TTn(g)Cn(h)mQ of the
numerator, we follow exactly the same proof by considering the vector Cy,(h)x in the
place of . Therefore

(3.54) mgcn(h)TTﬂ(g)Cn{h)xQ ~ Ing(Q)IQ ™~ Qn.

Under the assumptions ||Ts|lz = o ((qn)%) and ||zglls =0 ((qn)%), the remaining
terms ZL Az g, TL Az and T Az of (3.52) are all absolutely smaller than gy, in order
of magnitude. Exactly the same happens to the corresponding terms of the numerator.
So, the order of the denominator of r; is just the order of 3, s c?g; if it exceeds g,
or gn otherwise, while the one of the numerator is just the order of ), ¢ cZh?g; if it
exceeds gy, Or gn otherwise. In any case the numerator and the denominator coincide
with each other, meaning that r, is bounded.O

LEMMA 3.15. Let x be such that [Ty = o(1) and |22 = 0(1) and for the
sequences {3p}n and {gn}n there hold limp—co 8p = 1, liMp—oo gn = 0 with ||Tgllz =
2 ((qn)%) or||lzglla = 2 ((qn)%). Let also that h is a (k,0)-smooth function. Then,
the ratio T4 is bounded.
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Proof. The proof follows exactly the same steps of Lemma. 3.14 to obtain the same
results until (3.54). First, we will prove that ||Zg||2 ~ ||zg|lz = 2 ((qn)%), otherwise
[Zgll2, lzglla = 0 (Ziesﬂ c?g?). For this we assume, without loss of generality, that

lzsllz = o(||Zsll2) and are looking for a contradiction. From the considerations (3.45)
and (3.46) it is easily seen that

(3.55) (Zs); = % > ecos (Q(Lﬂé_?;})ﬁ) _ % > exeos((G ~ 1))

iES, 1ES,

(3.56)(zg5); = % Z cicos{((n—k+j—1)y) = % Z cicos((k+ 1 — jw),

1ESy €S,

for all j = 1,2, k, where we have put y; = @ It is obvious that (Ts); =
(zs)e—j, J = 2,3,...k, which means that the above vectors have common entries

with possible different orderings except for the first ones, i.e. (Ts)1 = % Ziesn c; and

(zs)1 = -\/1—5 > ies, cicos(ky;). To have different orders of magnitude in the vectors
Tg and zg, it should be

1
(3.57) (Tsh = s Z i ~ [Zsll2
i€Sn
and
(3.58) (zs); = %Ezsj cicos(jys) = o (ITslla), 5=1,2,..., k.
We consider now the vector z = (27 22 - 2)T which is bounded ||z < oo, indepen-

dent of n. From the difference in the order of magnitude of the entries in (3.57) and
(3.58) we deduce that, for all such vectors, there holds

1 1 1 o . -
(3.59) (Ts) = T Z G~ = D a- ﬁ;zj > cicos(jyi) ~ [Zs]l2.

iE€Sn i€Sy, i€8n
The Taylor expansion with &k + 1 terms of cos(jy;) gives
}z(k—l) i ,)2.&:

(3.60) cos(jy;) = 1 — ——(jzg')z s (;1)(’*1)——%3(’; 7 + (—1) Ug;ﬂ

cos(jdi),
where §; € (0,%;). By replacing in (3.59) we find

k .
Eiesn Ci — Ej:l Zj Eiesn Ci COS(J‘%‘)]
k k 2
E-&esn Ci — Ej:l Zj Eiesn i+ Zj:l zj% Zéesn Ci'yiz
- k j2(k—1) 2(k-1
= e (R T gt e gl

:2(k—1)

k o
+ ) 2=t zj%(m)'! 2ie5 ciyf® COS(J?J@‘)] .

(Ts)1 ~

s s

(3.61)

If we choose the vector z such that

k k k k
862y N m=1, 3 %7 =0, Y a0 =0 g N -1 =,
j=1 =1 j=1 =1
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all the terms in (3.61) are zero except the last one. Thus the order of ||Zg||z is given
by

2

e k 2% i
(@shl ~ x| Ejer 2% Lies, cibi* cos(id:)|
k 2k .
= ‘\/1% Ej:l EAE Z«.‘esn L’31|92k \}— Ziesn |Ci|yi2k

IZsll2

(3.63) : )
1 2 k Sn )
i (EiESn 1)* (ZzESn ciyj ) % #n (EieSn C?Qz'z) ’
1
= @ (Emesn C'Lgt ) :
i,
which constitutes a contradiction. In the case where ||Zs|l2 = 0 (3 ;eg, c?97)?, the
ratio is bounded since the circulant term exceeds all the others. The choice (3.62) can

be obtained from the solution of the k x & linear system

1 1 1 1 -4 1
1 92 32 (k—1)2 z3 0
(364) 1 24 34 e U\’I - 1)4 Z3 — 0
:ll_ 22{.';:“1) 32(1&—1) . (k _ 1.)2(.'6-—1) Z.k; D

This is a Vandermonde system which has a unique solution different from zero and
bounded since it depends only on &k and not on n.

In the same way we can prove that |Z5zg|2 ~ ||Zs/3 ~ |lzg||%. By taking into
account Lemma 2.9 and Lemma 2.4 of [18] we can prove that [Tz Azg| ~ [T5zsl, as
we have done in the 7 case.

As a consequence,

(3.65) IZsl3 ~ llzsll3 ~ [Z5zs| ~ [Z5 Azs| = 2 (gn) -

In that case we use the assumption that the function h is a (k,0)-smooth function.
By taking the Taylor expansion of h;s about the point zero we deduce

: 2(i-1)m\k .
Be—i (M) ot Ca e, ae (O, 2(i - m) |
n k! n

Hence, the vector corresponding to Zg in the numerator is given by

2(i—1)m\k . k
2(e — )w
E hiciT; = E (ho + e z, ) h(k)(fi)) ¢i¥U; = hoZs + E (_( - ) ) 0:¢iTs,

€Sy 1ESn 1ES,
_ ey - : : :
where 7; = =, 1 € Sy, is bounded, while the one corresponding to zg is
i—1)r
3 e, = hozs + 3 (2 ) i
i€Sn i€8,

The correction term of the numerator, Z = S, hie;DF A Y1, hicju; takes the form

ZIES hieoF Azes hiciv; + 2 s, hiciD? AZ?EQ hic;u;

2 ieq, Med; AZzeS hctv + 2ien hic@] AY ieq, Mo
Zl -+ ZQ 4 Z3 4= Z4

Z
(3.66)

I+l
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As a conclusion, we have proved that the fourth term Z, does not exceed g,. The

other terms give
k
_) mciﬁ;r> A

. k
hozf + Yies, (Q(Z;I)W) ’?ici!i) = hiTg Az
: k . k
+ hoBEA Ties, (2EE) miciw; + ho e, (@)
: k : k
x  meUAzk + Ziesﬂ (2(1:«.1)W) UETEAN Ziesn (2(1;1)W) TGy,

Zy

I
o
=)
8
w0
+
&
tn
3
—
hd
3|1
=
3

X

(3.67)

: k
(368) Zg = hofgﬂ EieQn h,-ciy_i -+ ZiESn (@) niciﬁ;’rA ZiEQﬂ h;’CiQi,

; k
(3.69)Z3 = ho 2ieQn hiei] Azg + 2icQn hiei@] A 2ies, (3(1—_1;1‘)1) TiCily.

First we estimate the quantities

=1 ( )kﬂicﬁillz and g=| ) (Z@%)W)kmqgi”z_

1€8, i€Sn

‘ K
. (=1)(i-1)m
From i € §,, and the fact that 7; = (\/%_e " ) we get that ||T;]la ~ .
=1

nZ
Therefore,
» B ink
T < Ties, Inlled (522) 19l ~ ks, leil ()
R 3 [#5.
= ﬁ(ziesn 1) (Eiesn ¢ E ) (216511 Ci g

1
where n € (min; |n;|, max; |n;]). Since i#_é'_ = 0(1) we deduce that g = o ((Zlesﬂ cigi) 2).

For the same reason we get ¢ = o ((Elesn gi)? ) Coming back to the terms Z,

Zy and Zj3 of the numerator we get that the order of the first term of Z; in (3.67) is
[hozcs Azg| = 2(gn), given by (3.65), which coincides with Z% Az g of the denominator
n (3.52). The order of the second and the third term of Z; in (3.67) are

= |hoTHA Z (2&—1 ) 7iCil; Z (@)kﬂiﬂ'im

1€S, €S,

< hol|Zs 2] Al

2

1
2
=[Zsll2 x 0 (Z C?Qi) )

1€Sn

. k
2 s
= |ho E (—(E“;L)I) nie; Azg

i€Sa

1
2
= [[Zsll2 x o ( > ﬁgz)

1€Sn

I3 es. czg; = O (||Zs||2), then both terms are less than the first one of Z;, in order
of magnitude. If 7, ¢ c2gi = 2(||Zsll2), then both p; and p, are less than the
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corresponding circulant term, in order of magnitude. In any case they do not play
any role in the order of magnitude of the numerator. We arrive at the same conclusion
for the order of the third term of Z; in (3.67) which is o (Ziesn c?g;). For the terms
of Z in (3.68) we find that the order of the first one is

o b A 1
hoTA Y hiciwy| < hollTsllzllAllz || D hiciws|| ~ [Zsl2(gn)?,
1€Qn 1€EQn 9

which coincides with TEAEQ of the denominator in (3.52). The order of the second
term of Zy in (3.68) is

. k-1 . ko
T ) _ im -
5 peeine B ey 2 Z( ) miei|| 1Al
i€5n (n i i€Qn ies, \P 1 2
_%
1
| e <o (St ) <o
tEQn i€Sn

2

which is less than the first one, in order of magnitude, if 3,5 ¢Zg; = O (||Zs]3) while
it is less than the corresponding circulant term, in order of magnitude, if Ziesn g =
2 (|zs||3), since ||Zs|l2 = 2 ((qn)%) Exactly the same happens with the terms of
Zs in (3.69).0

THEOREM 3.16. Let f € C3. be an even function with roots zo,z1,. ..,z with
multiplicities 2k1, 2ka, . .., 2k;, respectively, g the trigonometric polynomial of order
ki = 22:1 k; given by (2.1), that rises the roots and w the remaining positive part
of f (f = g-w). If the function h = w is a (k;,z;)-smooth function for all z;s,
J = 1(1), then the spectrum of the preconditioned matriz KS (f)~*Tn(f) is bounded
from above as well as from bellow:

(3.70) ¢ < Amin([KZ (M7 Talf)) < Amax (K (N 7 Ta(f)) < C,

where ¢ and C' are constants independent of the size n.

Proof. For the case of one zero at 0, Lemmata 3.12, 3.13, 3.14 and 3.15 cover
all possible choices of the vector z € IR™ to obtain that the Rayleigh quotient r; is
bounded. The case of one zero at a point different from 0 is covered by a shift trans-
formation of the interval [—m, w]. The generalization to more roots is straightforward.
The main difference concerns on the definition of the sets S, and @,, of (3.49) and
(3.50). We give the new definition of the above sets

1) S, C N,¥n
(e 2) Vi sequence to which i € Sk we have limp_.co & —3; =0
or limp o 55" —2; =0, j=1,2,...,L
and
(3.72) Qn = No\ Sn.

After that definition, Lemmata 3.12, 3.13, 3.14 and 3.15 work well to obtain our result
that 7, is bounded, which completes the proof of the Theorem. O

113



As a subsequent result we have that the minimum eigenvalue of [KS ()] Tn(f)
is bounded far away from zero. Hence, from the theorem of Axelsson and Lindskog
[1] it follows immediate that the PCG method will have superlinear convergence.

We have to remark here that if the smoothing condition of the function A does not
hold, the Rayleigh quotient 7, may not be bounded and consequently the PCG method
may not have superlinear convergence. The worst case, where we get the maximum
value of r,, is the one of choosing z = z5. In that case the denominator coincides
with =z and so for the numerator to be of the same order the (k, 0)-smoothness of the
function h is necessary. Otherwise, if h is a (k — 1,0)-smooth function, which is the
best possible choice, we find that the numerator coincides with ;TL—l Consequently,
r; tends to infinity with a rate coinciding with n.

REMARK 3.1. Following a theory closely related to that just developed, band plus
Hartley preconditioners could be applied for the solution of ill-conditioned Hermitian
Toeplitz systems. In this paper, we do not study this case. We simply remark that a
similar analysis could be applied to obtain analogous results for the superlinearity of
the convergence. Since Hartley matrices are closely related to circulant matrices, we
believe that (k,Q)-smoothness, for the function h, is needed.

4. Smoothing technique. Our analysis brings up the following question: Is the
condition of smoothing valid for most of the applications? The answer to this question
is not positive. There are problems where the positive part & is smooth enough but
in most of them we are not guaranteed. In some of the problems the function % is
not differentiable at 0, nor continuous. In the following two subsections we propose a
smoothing technique which approximates A with a (k — 1,0)-smooth function for the
7 case and with a (k,0)-smooth function for the Circulant case, respectively, in order
to get superlinear convergence.

4.1. Smoothing technique: 7 case. Let assume that the factor h of the gen-
erating function f is not a (k — 1,0)-smooth function. We define the function & as
follows

. Pilhl(z) if z € (—¢,¢)
(4.1) h(ﬁ)-{ kh(z) if xe[—w,(—E]U[fﬂr]

where ¢ is a small positive constant and Pg[h] is an even and a (k — 1,0)-smooth
function which interpolates h at the points —e,0, €. It is obvious that we can choose
as Py[h] the function

h(e)

2) Pulh@) = 2L g,

which is a k degree interpolation polynomial on the interval (0, ¢), or the function

hie) — h
(43) Pulhi(s) = — =5 2cos(a)t + o,

(2 —2cos(e)) 2
which, for even k, is a k degree interpolation trigonometric polynomial on the interval
(—¢,€). For small e the function Py[h] is a very good approximation of h on the
interval (—e, ¢). For this reason we propose as preconditioner the matrix _

(4.4) Ko (f) = ma(R)Ta(g)a ().
The smoothness identity of the function f =g- h? is valid and Theorem 3.9 guarantees
superlinear convergence of the PCG method with preconditioned matrix sequence
KZ(f) 1T (f). We state here the generalization of Theorem 3.9.
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THEOREM 4.1. Let f € C3, be an even function with roots xg,o1,...,T; with
multiplicities 2k, 2k, ..., 2k, respectively, g the trigonometric polynomial of order
k= Z;ﬂ k; given by (2.1), that rises the roots, w the remaining positive part of f

(f =g w) and h = \/w. We define the function h as follows:

P lb(z) fze(z; —eim+e)i=212.:.,1 and

(4.5) h(z) = h is not a (k; — 1,z;)-smooth function |
h(x) elsewhere
where €;,7 =1,2,...,1 are small positive constants and
ij [h'} (I) o (:cvmj+cj-)h(:c,-+5j)—(a;:ifmgl—ej)h(xl—e_,—)—zejh(zj) \:t; B mjlk + h{$j) 5
J
Po (@) = (r2eoslommite)(esten)t@-2costes;—es))hiz; —e;)=(=2cos(2e;))h(as)
y :

. (2—2cos(2¢;)(2—2 cos(e; )
% (2—2cos(z —x;))2 + h(z;).

Then, the spectrum of the preconditioned matriz Kfl(f)‘lTn(f) (f = g-flg) is bounded
from above as well as fromn bellow:

tite St TG P T L R R~ 0000 = 6,

where ¢ and C are constants independent of the size n. We have to remark here that
the functions Py, [h] have been taken to be interpolation functions of the function f
at the points x; —€;,2;,; + ¢; as we have done in relations (4.2) and (4.3) for the
points —¢, 0, €.

4.2. Smoothing technique: Circulant case. Let us assume that the factor
h of the generating function f is not a (k,0)-smooth function. Then, we define the
function h given in (4.1), in analogy with the 7 case. Pj[h] is an even and a (k,0)-
smooth function which interpolates h at the points —e, 0, ¢ and could be chosen as

{4-6) Pk[h](:a:) = ﬂ?%lmlk+l 4 Higg
or
(4.7) Pi[k](z) = L"Ul(g _ QCOS(w))% + i,

(2 — 2cos(e)) =2

For small ¢ the function P;[h] is a very good approximation of i on the interval (—e, €).
Then, we propose as preconditioner the matrix

(4.8) KE(f) = Ca(R)Tn(9)Cn(R).

The smoothing identity of the function f = g- A2 is valid and Theorem 3.16 insures
superlinear convergence of the PCG method with preconditioned matrix sequence
KS(f) " Tn(f). We state here the generalization of Theorem 3.16.

THEOREM 4.2. Let f € Car be an even function with roots mg,x1,...,T; with
multiplicities 2k1,2ka, ..., 2k, respectively, g the trigonometric polynomial of order

115



k= 22-:1 kj given by (2.1), that rises the roots, w the remaining positive part of f
(f =g -w) and h = Jw. We define the function h as follows:

P [h)(z) ifze€(z;—e,z+€),j=12,...,1 and

(4.9) h(z) = h is not a (kj, z;)-smooth function ,
h(z) elsewhere
where €;,7 = 1,2,...,1 are small positive constants and
Plble) = (E_IJ+5J)h(Ij+EJ)_(z;;g;‘i)""(:ci_EJ)"QEJh(z’i){‘T — z;[Ft 4 h(z;) or
J
P, [h}(.’t) _ (242505($f3j+6j))h(IJ+CJ)+(2-2CDS(I—:I:-'i+Ej))h-}(:rj—€j)—(2“2CUS(2EJ’))h(Ij)
4 (2—2 cos(2e;))(2—2 cos(e;)) 5

k41

X (2—2cos(z —x;)) T + h(z;).

Then, the spectrum of the preconditioned matriz KS (f)"'To(f) (f = g-h2) is bounded
from above as well as from bellow:

(4.10) 8< R (RS (A 2 Tal)) < Aass (B () V0 0H) <€,

where ¢ and C' are constants independent of the size n.
REMARK 4.1. The same smoothing technique could be applied for the band plus
Hartley preconditioners, when the function h is not a (k,0)-smooth function.

5. Numerical Experiments. In this section we report some numerical exam-
ples to show the efficiency of the proposed preconditioners and to confirm the validity
of the presented theory. The experiments were carried out using Matlab. In all the
examples the righthand side of the system was (1 1 --- 1)T in order to compare our
method with methods proposed by other researchers. We have run also our examples
with the righthand side being random vectors and we have obtained results with the
same behavior. The zero vector was as initial guess for the PCG method and as

stopping criterion was taken the validity of the inequality %}E—;}Hﬁ <1077, where r(*)
is the residual vector in the kth iteration.

EXaMPLE 5.1. We consider the function f)(z) = z* as generating function. The
associated function h = %(m—) is a (2, 0)-smooth function and so, smoothing tech-
nique is not needed for both band plus 7 and band plus circulant preconditioners. In
Table 5.1 the number of iterations needed to achieve the predefined accuracy are il-
lustrated. We compare the performance of our preconditioners with a variety of other
well known and optimal preconditioners: R is the pioneering one proposed by R. Chan
[8]. S*3 is the proposal of S. Serra Capizzano in [21] using best Chebyshev approx-
imation (3 is the degree of the polynomial). M2} is the preconditioner proposed
by D. Noutsos and P. Vassalos in [19], which is based on best rational approximation
with 1, 2 being the degrees of the numerator and denominator, respectively. T is the
w circulant preconditioner proposed by D. Potts and G. Steidl in [20]. Finally, by
7 and C, we denote the proposed in this paper band plus 7 and band plus circulant
preconditioners, respectively. The efficiency of our preconditioners is clearly shown.

EXAMPLE 5.2. Let

_ [ 2z +1 %l < %
@ ={ 10t se mriies)



TABLE 5.1

Number of iterations for fi(z) = z*

[ o [R[SC[ME]W][r]C
32 | 15| 11 6 T|15|6
64 | 20| 11 8 8 | 5|6
128 | 24 | 12 10 8 |66
256 | 27 | 12 11 9| 7%
512 | 29| 13 11 9 | 7|7
1024 | 30 | 13 12 9 (7|7
TABLE 5.2
fa(z)
n AmaxT | AminT | 7 | AmaxC | 2minC | C | B
32 | 1.7612 | 0.9003 | 6 | 42123 | 0.7960 | 9 | 8
64 | 1.7694 | 0.8925 | 7 | 4.2465 | 0.8027 | 10 | 24
128 | 1.7736 | 0.8869 | 7 | 4.2648 | 0.8070 | 10 | 27
256 | 1.7758 | 0.8825 | 7 | 4.2742 | 0.8098 | 11 | 29
512 | 1.7771 | 0.8791 | 7 | 4.2791 | 0.8116 | 12 | 30
1024 | 1.7778 | 0.8764 | 7 | 4.2815 | 0.8127 | 12 | 31
be the generating function. The corresponding function h is QT'%)(T), which is

an (1,0)-smooth function. Hence, our preconditioners ensure superlinear convergence
without any smoothing technique. In Table 5.2 we give the minimum and the maxi-
mum eigenvalues of the preconditioned matrix and the iterations of the PCG method
needed for both 7 and circulant cases. In the last column, denoted by B, we give for
comparison the iterations needed if we use the band Toeplitz preconditioner generated
by the trigonometric polynomial which rises the roots.

ExXAMPLE 5.3. For the generated function

[ 2z +1 lz| < 3
fa(z) = { (2 +2)a! z€[—m,m] \2[*%%}

we have that & = 2. It is easily checked that the corresponding function h{z) =
W“fﬂm), is an (1,0)-smooth function. Consequently, the 7 plus band preconditioner

2—2cos(z

works (well without smoothing technique, while the circulant plus band one needs a
further smoothing step. In Table 5.3 we give the corresponding results, as in Table 5.2
for the 7 case without smoothing, while in Table 5.4 we give the results for the circulant
case without and with smoothing technique. The band plus circulant preconditioner
is denoted by C. It is easily seen that the smoothing technique is required for the
circulant case to achieve superlinearity.

EXAMPLE 5.4. Finally, we consider the function

8|z + 1] lz| < %

fa(z) = { (&2 +2)2° z€[-mn]\

[SE]

- ,721]
as generating function. In this example we have & = 3 and moreover the corresponding

function h(z) = \/Iﬁf“‘:—g;%&w is also an (1,0)-smooth function. Thus, the smoothing
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TABLE 5.3
fa(x) T without smocthing

n AmaxT | AmiaT |7 | B
16 4977 | 0854 | 7 | 8
32 | 5.5929 | 0.843 | 8 | 17
64 6.049 | 0.835 | 10 | 34
128 | 6.3624 | 0.8291 | 11 | 45
256 | 6.5669 | 0.8249 | 11 | 54
512 | 6.6955 | 0.8221 | 11 | 61
1024 | 6.7744 | 0.8205 | 12 | 67
TABLE 5.4

fa(z) Circulant and smoothing circulant in [—.5, .5]

n AmaxC | AminC C | AdmaxC AminC C B
16 29.893 | 0.3498 | 11 | 28.433 | 0.37039 | 11 | 8
32 49.417 | 0.2286 | 13 | 32.369 | 0.34827 | 13 | 17
64 83.835 | 0.1386 | 15 | 34.260 | 0.34001 | 14 | 34
128 | 146.42 | 0.0789 | 18 | 35.552 | 0.3328 | 15 | 45
256 | 263.63 | 0.0428 | 23 | 36.218 | 0.3292 | 17 | 54
512 | 488.33 | 0.0224 | 26 | 36.556 | 0.3273 18 | 61
1024 | 926.19 | 0.0115 | 29 | 36.725 | 0.3265 | 18 | 67

technique is necessary for both cases to achieve superlinearity. In Table 5.5 we give
the results for the 7 case without and with smoothing technique, while in Table 5.6
we give the associated results for the circulant case. The meaning of stars is that the
iterations required are over 100. The presented numerical results fully confirm the

theory developed in the previous Sections.

In Figure 5.1, the smoothing technique is shown graphically for the function

z?(1+|z|)

h(:c) = ﬁm.

3.

‘We have to remark that h is not a differentiable function at zero.

FIG. 5.1. Smoothing of h(z) =

22(14|x])
2—2cos(x)’
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TABLE 5.5
fa(z) 7 and T with smoothing in [—.5, .5]

n MaaxT | AmiaT | T | At | Aain® | 7 | B
16 24.416 | 0.6582 | 10 | 31.832 | 04781 | 8 9
32 | 40.853 | 0.4729 | 14 | 57.051 | 0.3312 | 10 | 20
64 | 68.551 | 0.3134 | 20 | 63.556 | 0.3281 | 11 | 48
128 | 116.29 | 0.1929 | 33 | 65.301 | 0.2965 | 13 | *
256 | 201.33 | 0.1096 | 53 | 66.761 | 0.2897 | 14 | *
512 | 358.56 | 0.0581 | * | 67.102 | 0.2813 | 15 | *
1024 | 698.12 | 0.0246 | * | 67.289 | 0.2794 | 15 | *

TABLE 5.6
fa(z) Circulant and smoothing circulant in [—.5, .5]

n ;\maxc )\minC C /\me )\minC C B
16 | 371.96 | 0.0953 | 12| 33815 | 0.1073 |11 ] 9
32 | 1525.2 | 0.0239 | 17| 517.36 | 0.0863 | 13 | 20
64 | 7855.2 | 0.0041 | 25| 653.94 | 0.0756 | 16 | 48
128 | 48497 | 0.0006 |43 | 743.32 | 0.0699 | 19 | *
256 | 3.3E5 | 75E -5 | 79 | 792.62 | 0.0672 | 21| *
512 | 2.5F6 | 1.6E—5 | * | 818.57 | 0.0669 | 22 | *
1024 | 1.7E7 | 2.7E -6 | * | 829.61 | 0.066710 | 23 | *
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Abstract

In this paper we are concerned with the study of spectral properties of the se-
quence of matrices {A4,(a)} coming from the discretization, using centered finite
differences of minimal order, of elliptic (or semielliptic) differential operators L(a, u)
of the form

& (@) du() = f(») onQ=(0,1),
Dirichlet B.C. on 812,

(1)

where the nonnegative, bounded coefficient function a(z) of the differential oper-
ator may have some isolated zeros in = QU 8. More precisely, we state and
prove the explicit form of the inverse of {An(a)} and some formulas concerning the
relations between the orders of zeros of a(z) and the asymptotic behavior of the
minimal eigenvalue (condition number) of the related matrices. As a conclusion, and
in connection with our theoretical findings, first we extend the analysis to higher
order (semi-elliptic) differential operators, and then we present various numerical
experiments, showing that similar results must hold true in 2D as well.
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1 Introduction

The numerical solution of elliptic 1D and 2D Boundary Value Problems (BVPs)
is a classical topic arising from a wide range of applications such as elastic-
ity problems, nuclear and petroleum engineering etc. [31]. In these contexts,
the coefficient function can be continuous or discontinuous, but its positivity
guarantees the ellipticity of the continuous problem. On the other hand, for
the calculation of special functions or for applications to mathematical biology
and mathematical finance, the strict ellipticity is lost and indeed the function
may have isolated zeros generally located at the boundary 95 of the definition
domain (see [16,32,1] and references therein).

Since the arising linear systems are of large size, fast and efficient resolution
methods are always welcome and, for stability reasons, iterative techniques
have to be preferred. However, in order to devise efficient and accurate itera-
tive procedures, crucial spectral properties of {A,(a)} must be understood. In
particular, we are interested in spectral localization results and especially in
the asymptotic behavior of the extreme eigenvalues (which implies the knowl-
edge of the asymptotical conditioning). Furthermore, the characterization and
understanding of the subspace where the ill-conditioning occurs would be also
useful, at least in a certain approximate sense. In fact the latter information
represents a theoretical basis for the construction of effective preconditioners
for classical and Krylov based iterative methods or in designing good prolon-
gation/restriction operators for multigrid methods (see [15,30] and references
therein). In the specific case of elliptic and semi-elliptic non-necessarily sym-
metric BVPs and positive definite ill-conditioned non-necessarily Hermitian
Toeplitz sequences, this approach has been quite successful, both in sequen-
tial and parallel models of computation (see [11,12,21,27,24,26,4])

In this paper, we study the asymptotic conditioning with special attention to
the minimal eigenvalue, since it is easy to prove that the maximal eigenvalue
is bounded by a pure constant (see e.g. [10,25]). From the viewpoint of the
mathematical tools, we widely use three notions of positivity: component-
wise positivity (so that the Perron-Frobenius theory [31] can be invoked),
positive definiteness (so that the evaluation of the spectral norm, induced by
the Euclidean vector norm, is reduced to an eigenvalue analysis i.e. to study
of the spectral radius), and operator positivity (so that powerful equivalence
results can be applied, see [23]).

For problem (1) and for strictly positive coefficient function a(z), in [10] it has
been proved that the Euclidean condition number of A,(a) grows as n® For
the degenerate case of a(x) with some isolated zeros, in [21], the second author

“Operational Program for Education and Initial Vocational Training” of the 3rd
Community Support Framework of the Hellenic Ministry of Education.
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argues that the condition number of the arising sequence {A, }, is affected by
two factors (see also [25] and Subsection 2.2): the order of the differential
operator which causes a growth of order n? (for second order problems) and
the order « of the unique zero of the coefficient a(z) which gives a contribution
of order n®.

The main goal of this paper is to give an explicit formula for the inverse of
A, and an asymptotical study of its condition number, for every nonnegative
bounded function a(z), not necessarily regular (see the beginning of Section
3 for the precise hypotheses), and with a unique zero: in particular, we show
that the conditioning grows as n™*<{*2} up at most to the factor log(n) only
in the case where o = 2.

The analysis is then extended to the case of several zeros and to the case of
higher order operators: more specifically, when more than one zero is involved
the behavior of the conditioning becomes less regular and resonance effects
appear, increasing the order of the conditioning; on the other hand, for 2kth
order BVPs, & > 1, and with a unique zero of order « in the nonnegative coef-
ficient, the quantity n™{®2} is simply (and naturally) replaced by n™a*{®2¢},
Finally, even though we focus our attention on 1D problems, we should stress
that an interesting side-effect of this paper is to provide a theoretical frame-
work which can be exploited to cover the less explored and highly interesting
multidimensional case.

The paper is organized as follows: in Section 2 we set the problem in more
detail, we set notations, and we report in a organized way some more or
less known results from the relevant literature; Section 3 is devoted to give
the explicit form for the inverse of the matrix A,, a fundamental tool for
our derivations, while, in Section 4, we determine the asymptotic behavior of
the spectral radius of A!, for the second order problem in (1). Section 5 is
addressed to the extension of our findings in the case of arbitrary order elliptic
BVPs. Furthermore, in Section 6 we discuss the extension of our main theorem
in 2D, something which is ascertained numerically in Section 7, where several
1D and 2D numerical experiments are presented and discussed. Section 8 is
finally devoted to conclusions and perspectives.

2 Definition of the problem, notations, and preliminary results

Let us consider the second order BVP (1) and its approximation by using
centered finite differences, of minimal bandwidth, of precision order two, and
of stepsize A = (n + 1)~! on the grid-points zg = 0,21, Z2,...,%Tn, Tns1 = 1.

t
If z; denotes L t € [0,n+ 1], a; = a(z:), f = f(z+), and u; represents
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an approximation of u(-) at x;, then the considered numerical scheme leads to
the following set of equations

) .
—ai_%ui_l + (G’-i_% +ai+%)ui - ai+%ui+1 =h fi, 1= 1,2, vy N

Then, by collecting the above formulae and by taking into account the bound-
ary conditions, we arrive to n xn linear system whose coeflicient matrix A, (a)
shows the form

a1 +as —as
2 2 2
—a3z a3z +as —as
2 3 3 2
—as ".
2 (2)
= 1
n—3
L “a'n.—% a‘n—% + a’n+%J

Let T,, = An(1) be the Toeplitz matrix (i.e. constant along diagonals) dis-
cretizing problem (1) with a = 1, that is the matrix in (2) with @ = 1. The
matrices A, (a) can be expressed as

n+1

Ap(a) = Zl ai—1/2@n (1), (3)

where the matrices (i) are symmetric nonnegative definite dyads given by

Bors B oo O

and Qn(1) = eref, Qn(n + 1) = e,el, with e;, 5 = 1,...,n, representing the
jth column of the identity matrix.

Therefore the matrix
n+1

I, = Z Qn(ijs (4)
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is the sum of all the dyads @,(7) and A,(a) is a weighted sum of the same
dyads according to the weights a;_1/2, 7 =1,2,...,n+ 1. Moreover each dyad
has a “local structure” with respect to the canonical basis of R™"*™ so that each
Welght Q;—1/2 contributes in the matrix An(a) to Er,;,_]_,z'.ﬁl, E?l,i—l; Ei—l,i: Ei,i
where E,; = e,e] . Furthermore, this notion of “locality” is geometrical as
well, since vectors of the canonical basis that are close (es and e; are close if
|s —t|/n = o(1)) correspond to dyads

Qn(s - 1); Qﬂ(s)) Qn(t - 1)) Qn(t)

such that the related weights come from close points in the interval [0, 1].
Therefore we can say that the matrices {A,(a)}» have a local decomposition
with respect to the Toeplitz matrices {7, = A,(1)},: this locality principle
is important for obtaining global distribution results for the spectra of the
related matrix sequences (see e.g. [29,22]). However, again thanks to (3) and
to the nonnegative definiteness of the basic dyads @, (), an other important
aspect is that A,(-), regarded as an operator from a suitable function space &
into R"*", is linear and positive i.e. A,(aa+0b) = aAn(a)+8AL(), o, B € R,
a,b € § and A, (a) is nonnegative definite if a is nonnegative, as a function in S
(see [23,28] for a general discussion and several results on matrix-valued linear
positive operators). In Subsection 2.2 , we will use (3), (4), and this notion

of operator positivity for obtaining preliminary results on the eigenvalues of
Ap(a).

Finally we should emphasize that the latter dyadic decompositions have a
much broader interest and, in actuality, they apply to general differential op-
erators approximated by general finite differences (see [25, Theorem 4.1] and
also Lemma 2.1, Corollary 3.3, and Theorem 3.5 in the same paper) and by
finite elements (see Sections 3 and 4 in [3]).

2.1 Notations

We introduce symbols that we will use throughout the paper. Let us consider
two nonnegative functions a(-) and 3(-) defined over a domain D with accu-
mulation point Z (if D = N then Z = oo, if D = [0,1]¢, d = 1,2, then Z can
be any point of D). We write

o o) = O(B(+)) if and only if there exists a pure positive constant K such
that a(z) < K3(z), for every (or for almost every) z € D (here and in the
following for pure or universal constant we mean a quantity not depending
on the variable z € D);

e o) = Q(B(-)) if and only if there exists a pure positive constant K such
that a(z) > K3(z), for every (or for almost every) z € D;
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o af-) = o(B()) if and only if a(-) = O(4(:)) and lim a(z)/B(z) = 0 with Z
given accumulation point of D which will be clear from the context;

o af-) ~ B(-)ifand only if a(-) = O(8(-)) and B(-) = O(a(-)) (or, equivalently,
if and only if a(-) = O(G(-)) and a(-) = Q(B(\));

o o)~ () if and only if a(-) ~ (') and lim,_,; a(z)/B(z) = 1 with Z given
accumulation point of D (the latter can be rewritten as a(z) = 8(z)(1+0(1))
with 1 + o(1) uniformly positive in D).

2.2  Preliminary results

In the following, with respect to problem (1) and hence with respect to the ma-
trix structure in (2), we assume that the functional coefficient a(z) is bounded,
piece-wise continuous, nonnegative, and with a unique zero at 0 of order « i.e.
a(z) ~ z* on D =[0,1].

Since A, (-) can be regarded as a matrix-valued linear positive operator, it is
clear that it is also monotone (see [23]) that is A,(b) > A,(a) if b > a where,
as usual, the ordering is the partial ordering in the space of symmetric real
matrices and that of the function space &, respectively. Therefore, since in
our context the coefficient a(z) is nonnegative and bounded, it follows that
An(a) < llalleAn(l) = ||a]|wTn. From the latter, from the monotonicity of
the eigenvalues (i.e. A < B implies A;(A) < A\;(B), for every pair of n x
n Hermitian matrices and for every index j = 1,2,...,n, where A\ (X) <
Ao(X) < -+ € M(X), X € {A, B}, see [6]) and from the known expression of
the eigenvalues of 7},, we deduce that

Anin(4n) < [Ja]s4 sin? ( 2, )

w5)

On the other hand, if a(z) has a unique zero at zero of order «, then the
minimal eigenvalue of A, = A,(a) tends to zero at least as n™® (see also
(21, Proof of Theorem 4.1]). In fact, from (2) and from the Courant-Fisher
characterization (see e.g. [6]), we have

T
e; Ane; i
)\min(An) = 8?61 = GJ% + G.% - M (6)
Therefore the latter bounds imply
Amin(An) £ Cn~ max{ag}: (7)

with € universal constant independent of n (indeed depending only on the co-
efficient a(z), see (6)). Conversely, by exploiting again the monotonicity of the
operator A,(-) and of the eigenvalues, and by using the dyadic decomposition
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in (3), it follows that

Amin(lqzn.) > min ai_l/g)\min(Tn) ~ n_(a+2)' (8)

T 1<i<n+l

Here we are interested in filling the gap between (7) and (8) and in fact, in Sec-
tion 4, we will prove via Perron-Frobenius tools (see e.g. [31]) that the order of
the true behavior of the minimal eigenvalue is described by n=™{®2} with,
at most, an additional factor log(n) in the case where o = 2: that factor could
be motivated as a kind of resonance typical of finite differences in presence
of multiple zeros in the characteristic polynomial. The latter statement has
also important implications concerning eigenvectors: indeed the two sources
of ill-conditioning, the low frequencies coming from the constant coefficient
Laplacian, and the space spanned by few canonical vectors related to the po-
sition of the zero of a(z), do not interfere. There is only a superposition effect
so that the size of the degenerating subspace (i.e. that related to small eigen-
values) becomes larger, but the order of ill-conditioning is not worse than that
of the two factors separately. Therefore, both for designing multigrid methods
or preconditioners, we can treat the two ill-conditioned spaces separately in
a multi-iterative sense [20], as already done e.g. in [21] by considering a mul-
tiplicative diagonal plus Toeplitz preconditioner: more precisely, the diagonal
part takes care of the ill-conditioning induced by the zero of a(x) and the
Toeplitz part takes care of that induced by the Laplacian (a similar idea is
adapted in [26] in a multigrid setting). Finally we just mention that other
results of this type can be found in [21, Theorem 4.1] and [25, Corollary 4.1
and the third item of Theorem 4.3].

3 Explicit form for the inverse of the matrix A,

Let us consider the second order BVP (1) discretized as described in Section 2.
We assume that the functional coefficient a(z) is bounded, piece-wise contin-
uous, nonnegative, and with a unique zero at 0 of order « i.e. a(xz) ~ z¢
on D = [0,1]. The matrix coming from the considered approximation is
A, = A,(a) as displayed in (2). In the quoted literature, we find several
contributions discussing the form of the inverse of a tridiagonal matrix, or
more generally, on the one of a band matrix. First in 1960, F. Gantmacher
and M. Krein [13] proved that the inverse of a symmetric nonsingular tridiag-
onal matrix is a Green matrix which is defined by the Hadamard product of
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a weak type D and a flipped weak type D matrices as follows:

Up by e U U1 V2 = Up UiV UV -0 ULUp

Uy Ug -+ U U2 V2 - Un UiV2 Ug¥s -« -+ UgUp
C:UOV: ) o) = . (g)

Uy Ug -+ Uy Un Un * - Un UrUn U2VUp "+ UpUp

Conversely, the same authors have proven that the inverse of a Green matrix
is a symmetric tridiagonal matrix. In 1970, M. Capovani [8] stated and derived
relations which give the entries of the inverse of a tridiagonal matrix in terms of
its entries and its subdeterminants. In the same paper he gave the form of the
inverse of some particular cases of tridiagonal and block tridiagonal matrices.
One year later the same author [9], extended the result of F. Gantmacher and
M. Krein [13] for nonsymmetric matrices. R. Bevilacqua and M. Capovani [5]
in 1976, gave structural properties to determine the coefficients of the inverse
of a (block) as a function of its (blocks) entries. In 1979, W. Barrett [2] proved
that a matrix R with Ry, ..., Ry_1,-1 # 0 has the triangle property if and
only if its inverse is a tridiagonal matrix: more in detail, a matrix R has
this useful property if Ri; = “%% foralli < k < j and alli > k > j. In
1987, P. Rézsa [19], using properties of Green’s matrices and of semi-separable
matrices, proposed an algorithm to determine the elements of the inverse of a
band matrix by solving some difference equations. Later in 1998, J. McDonald,
R. Nabben, M. Neumann, H. Schneider and M. Tsatsomeros [17] generalized
the result of F. Gantmacher and M. Krein [13] for nonsymmetric tridiagonal Z-
matrices and they proved properties for the inverse of a tridiagonal M-matrix.
They gave also properties for the inverse of such matrices in terms of special
structured matrices called cyclopses (see again [17] for a formal definition).
More recently, i.e. in 1999, R. Nabben [18] proved properties for the inverse
of tridiagonal M, positive definite and diagonally dominant matrices.

The matrix A, in (2) has most of the above “good” properties: it is an irre-
ducible nonsingular tridiagonal Z-matrix, an M-matrix, and also a symmetric
positive definite matrix. Hence, we can combine the above results for charac-
terizing its inverse. However, the matrix A, has an additional property that all
row sums are zeros except the first and the last one. Taking into account Corol-
lary 3.6 of [17] or Corollary 2.6 of [18], concerning properties of the inverse of
an M-matrix, and Corollary 2.7 of [18], concerning on properties of the inverse
of a positive definite matrix, we obtain that the numbers u;,v;, i = 1,2,...,n,
appearing in the Hadamard product (9), can be chosen to be positive and such

that - i i
B ue— .28, (10)

U1 Uz Un
In the sequel we will find an explicit form for the matrix A;! by using the
forms of A, and C'in (2) and (9), respectively and inequalities (10). We take
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the product A,C which should be the identity matrix 7.

For k < j, the inner product of the kth row of A, with the jth column of C
gives

0 = (AnC)is = v5 (—p_gtrcr + (@) + By 1)tk — Gy 1tk11)

= Uj (ak—%(uk = g )— ak+%(uk+1 — uk)) .

We observe that this equality holds true if we chose, up to a constant factor,

One solution of this difference equation, up to a constant factor, is

k
1
w=y —, k=1,2,3,...,n
i=1 %i-1
For k = 1 we have
1 1 1
0= (ArC)1; = v; ((a% +ag)——ay (EI + a))
2 2 5

which holds true.
For k > j, the associated inner products give
0= (AC)ij = 15 (—ax_ 10kt + (G p + By 1 )JVk — Oy 1Vk11)
= Uy (*ak—é(vk—l — vg) + U’k+§(”k — Uk+1)) .

We observe also here that we can chose, up to a constant factor,

V-1 — Vi = y k=2,3,...,n.

One solution of this difference equation, up to a constant factor, is

n

1
Uk::z ) k:1:273:"'7n'

i=k %i+3

For k = n we have

1 1 1
(= (AnC)nj = u; (—a.n_% ( I ) + (an_% -l-an_,_%) )

an_% Al
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which holds true. We define by s; and by s the sums 3™, —1— and 37 %,

i=k a4 =0 q,
ity ity
respectively. It is obvious that with the above choices, up to a constant factor,
we have v, = sg, ur = s —s,, k =1,2,...,n. We observe also that the

sequence vy strictly decreases while wy strictly increases, so the inequalities
(10) are satisfied.

It remains to check the inner products for k& = j.

(AnCpr = — 1 U1V + (@1 + ak+%)ukvk — Oy LURV41
= —a;_1(s — sk-1)s + (a1 +ag1)(s — s)sk — oy 1 (8 = Sk) Skt
= 0.1 (Sk—1 — k)5 + Opyl (% — Sk41)(s — Sk)

= S+ (s—ay) =8 k=23, .. 0—-1,

(AnC)n = (a1 +az)uvn — aguivy = ay(s — s1)s1 + az(s1 — s2)(s — 51)

=38+ (s—5)=s,

(A T = —Gp_1Un—1Vp + (an_% + an+%)unvn
= ap_1(Sn—1 — Sn)Sn + am%(s — 81)8n = 8 + (8 — 8,) = 5.

As a consequence A,C = sI. To eliminate s we have to chose the constant
factors of the matrices U and V', in such a way that the relative product equals
%. Then, the inverse of A, is obtained by dividing C' by s which gives us the
explicit form:

s1(s—s1) s2(s—s1) s3(s—s1) . sn(s—s1)
s s s s

s2(s—s1) sa(s—s2) sa(s—sa2)  sn(s—s2)
s s s s

A7 — | sa(s—s1) sals—s2) sa(s—s3a) . . sn(s—sa) . (11)

L s s B s

sn(s—s1) sn(s—s2) sn(s—s3) ... Snls—sna)

L . s 5 s J

It follows another proof to obtain the explicit form of A-! independent of the
previous approach. It is not related to the theory appearing in the referred
literature, but only depends on the form (2) of A, and on a tricky use of the
Sherman-Morrison formula.

‘We consider the matrix

A, = tridiag[—1 1 Oldiaglaz as O 1ltridiagl0 1 —1]
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i.e.

1 as
2
-1 1 as 1 —-1.--- 0
Av=10 -11 a 1
-1
0o 0 ---~11 Gy 1
[ a3 —a3 |
2 2
—az a3 +as —as
2 2 2 2
-
- 2
=G 1
L man*% a’nu-% + a‘n+%_

We observe that the matrices A, and A, differ only in position (1,1), where
the term a 1 does not appear in the matrix A,. By (3), it follows that

e1 being the first column of the identity matrix. Our aim is to find an explicit
form of the inverse of A, and hence, from the above relation, we write

A = (At agere]) ™ = (T + oy A end]) AT (12)

1
2

As a consequence, in order to determine a formula for the inverse of A,, it
suffices to compute the inverses of the two factors appearing in (12). For that
purpose, we start our analysis by studying the inverse of A, (in this respect, we
should acknowledge that the expression of A.! can be found, for the specific
case of a = 1, in [7, Chapter 4, Exercise 8, p. 108]).

From the above factorization of A,, we find

A7l = (tridiag[0 1 —1])_1(diag[a% a an+%])“1(tridiag[—l 1 0]

5
2
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that is

- 1L 1r 1
111-.-1]| |2 1
2
11---1 as 11
3
A = kD
- 1 L 11 1
Z
1
1 1 11- 11
L < | wrk.d - N
[ 1 1 | :
a3 as a
3 %3 % ney | |1
11 1
g dg Ot 11
— o :
= — 11 1
2
1
an+%‘
1 11--- 11
L n+%_ ) )
[ _1 n _1 n 1]
1=1 0,1 =2 @51 1=3 a, 1 ,1"_‘_%
g ool ogm 1 e 4 .. _1
i=2 ai+% i=2 QH_% =3 a‘.+% an+%
o ) 1 En a5 Zn 1 1
=3 a,i+% f=3 ai+% =3 G‘i-i—i- an+%
1 1 1
L an+31_,- ant% n+é an+% .
§1 82 83 ' 8Sp
S9 83 S3 '+ 8p
= | 83 83 83 '+ Sy
Sn Sn Sp - Sn

The matrix a%ﬁ; eje] has nonzero elements only in the first column whose
expression is given by a 18k, k =1,2,...,n. Therefore the analysis of A;! is
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equivalently transformed into the inversion of the matrix

A—1 T
I+a%An ee = Q%SS 1

where the entry in position (1, 1) has been obtained by l4ays; = a1 (iJrsl) =

3
aLs. It is well-known that the inverse of the above matrix maintains the same

structure (since it is a slight variation of an elementary Gauss matrix, see
[14]), and it is easily obtained as

11
al s
2
—s2q
8
Tl Nl _
(I+a14; ere))” = -2 ]
_sn 1
L g =t
In conclusion
%L S]. 52 83 PR Sn
=1 83 Sp S3 +++ 8p
=1 s
A= e S3 $3 83+ Sp
e 1| | 85 Bn 8 254 85

where we have replaced % by 8 — 5;. The above matrix product leads to the

2
following results: the entries of the first row of A7' are

The entries (A

(A, =888 o

iy, 1=2,3,...,nfor ¢ > j, are given by
o 8:5; si(s — s;
(Anl)ij:— JJFSi:%
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while, for ¢ < j, we find

(A1) = ot 1+ 8; = msj(s — Si).
S

Consequently a compact formula for the inverse of the matrix A, is given by
the explicit form (11)

S

4 The spectral radius of A-!

For determining the asymptotic behavior of the condition number of the ma-
trix A,, we have to estimate the smallest eigenvalue since its maximal eigen-
value is bounded by 4||a||c, since A, = A,(a) < ||a||Ty by operator positivity
of An(-) (see Subsection 2.2) and since Amax(T) < 4 by Gershgorin’s theorem
(see e.g. [6,31]). Instead of this, we study the spectral radius of the inverse
of A,. The matrix A;! is a symmetric positive definite matrix with positive
elements. Thus we make use of the Perron Frobenius theory (see e.g. [31])
for positive (nonnegative) matrices. Our analysis is obtained via a series of
preliminary results.

Lemma 4.1. Let {A,}n, An € R™™, be a sequence of symmetric positive
definite, irreducible, and nonnegative matrices. If there exists a number g(n)
of rows such that their row sums are greater than or equal to f(n), then the
order of the spectral radius p(A,) is greater than or equal to 3(")1{&, so that

| p(An.) =0 (M) :

L

‘ Proof. Without loss of generality, we suppose that the row sums are in decreas-
ing order (otherwise this can be obtained by a proper permutation similarity
transformation). By using the Courant-Fisher characterization [6], we find

pA)= s 2"z > 2 (n) Ane(r)

zeR® ||z||=1
3

1 = S"z 1 g(n) - 1

ne (n) =5 = S’L ) ng(n)f(n)a
5,

where the normalized vector ~\}—-ﬁe(n) has replaced z, with e(n) being the vector

of all ones, and where we have denoted by S; the ith row sum of the matrix
L a
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We introduce the following definition.

Definition 4.1. A symmetric, positive definite, trreducible, and nonnegative
matric A € R™™", given in decreasing order of row Sums 1§ dominated by the
first g(n) x g(n) block if S; ~ Sg,, where Sp, = Zg 1 ai; and the symbol ~

that defined in Subsection 2.1.

Lemma 4.2. Let {Ay}n, Ayn € R™™, be a sequence of symmetric positive
definite, nonnegative matrices, which are dominated by their first g(n) x g(n)
block. If f(n) is the smallest row sum of the first g(n) rows, then the order of
the spectral radius p(Ay) is greater than or equal to f(n), so that

p(An) = Q(f(n)).

Proof. The proof follows the same procedure as of in Lemma 4.1. For that we

take the normalized vector me(g (n)), with e(g(n)) being the vector of ones

in the first g(n) entries and zeros otherwise. Thus

p(An)

Il

SUPgern, =1 £ AnT
> s’ (9(n)Ane(g(n))
5,
5

Sg(n)

= o TED 5 2 4040 = f(n)

and the proof is complete. O

Lemma 4.3. Let {A,}n, An € R™™, be a sequence of symmetric positive
definite, nonnegative matrices, which are dominated by their first g(n) x g(n)
block. If all the first g(n) rows are of the same order of f(n), then the spectral
radius p(A,) is ezactly of order f(n).

Proof. From Lemma 4.2 we deduce p(A,) = Q(f(n)). On the other hand,
from the Perron-Frobenius theory, we obtain that p(A4,) < max;S;. As a
consequence, p(A,) = O(f(n)) and the proof is complete. d

Now, we are ready to state and prove the main theorem of this section con-
cerning the relation between the order of the zero of the coefficient function
a(z) and the condition number of the matrix A,.

Theorem 4.4. Let {A}n, A, € R"™™, be the sequence of matrices derived
from the discretization of the Semielliptic Differential Equation (1) with the
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bounded coefficient function a(z) having a unique root at 0 of order o i.e.
a(z) ~ x* on D = [0,1]. Then, for the spectral condition number k(A,) of the
matriz A, which coincides in order with the spectral radius of A7, we find

n ?

n?, 0<ax<?,
K(An) ~ p(A71) ~ ¢ O(n*log(n)) N 2(n%), a=2, (13)
n?, a> 2.

Proof. The part £(A,) ~ p(A;*!) simply follows from the relations ||AZY|| =
P4, 1dnll = p(A) < dlall e, snd Jim p(A,) = 4lla]e, where the postive
definiteness of A, and the distribution results in [29] come into the play.

The fact that a(z) ~ z® means that there exist positive constants ¢ and C far
from zero and infinity such that, uniformly with respect to = € [0, 1], we have

ez® < alz) < Gz,
From the positivity of the operator A,(-) we obtain
cAn(z%) < Anla(z)) < CAn(z%)

where the meaning of the inequalities is in the sense of the partial ordering in
the real space of Hermitian (real symmetric) matrices. The latter implies

eds( A le®) < M(A(alz)]] = O%ld (2%)), 4=12,..,m

and, in particular, this holds also for the minimal eigenvalue, which means
that the minimal eigenvalue of A, (z®) and the minimal eigenvalue of A, (a(z))
coincide in order of magnitude. As a consequence, it is enough to reduce our
study to the matrix A,(z%), instead of A,(a(z)).

For the remaining part, since the matrix A_?! is a symmetric positive definite
matrix with positive elements, we will prove our assertion, by estimafing the
row sums of the matrix A;! with functional coefficient 22, given in its explicit
form (11), and by using the previous lemmas. For this we study the following
cases:

Case 1: a = 0.

The result related to this case is well-known [10], since the matrix T, coincides
exactly with tridiag[—1 2 — 1], i.e. the Laplace matrix with eigenvalues

4 sin® (ﬁ ,j=1,...,n Hence
n 5

K(An) ~ p(AZ") ~ . (14)
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We remark here that this result could be obtained also by following the rea-
soning we will use in the subsequent cases.

Case 2: 0 < a< 1.

We estimate the kth row sum Sy of A7

k n
So=23 55+ 2% > s, (15)
S =1 i=k+1

First we consider the quantity S;:

SzZ

F=i _?+"- Jj=t 7’1+1 7=t
NS R T |
(n+1)
i g( 2(n+ 1)) sl
Taking into account that we have uniformly discretized the interval [0, 1] in
n + 1 subintervals, we get that the value (2—?%)“& — is the (Lebesgue)

n+1? n+l
Therefore, the above sum is approximated by an integral as follows:

Sﬂ;x(n-l—l)fli z™ %z = ntl [xl'“]li L {1—( i )1—(]]. (16)

l—«o T l—a n-+1

measure of the rectangle with z-edges [, £t1] and y-edges [O, (2—%%)_&}

T
It is easily checked that the error of the above approximation is less than S; in

order of magnitude. If we substitute ¢ = 0 in relation (16), then we estimate
the quantity S as

1 n+1 1 n+1
~ 1/-%;: 1-a] = . 17
o (n—!—)uaz 7 l—a[m Jo e (17)
From (16) and (17) we find
n+l n+1 i\ (a+1)e e
S—8 = — 1- ( ) = e 18
Fl-a l1-a { il ] l—o (18)
By taking the sum of the coefficients in (16), we deduce
; l—a
Sl 2 Bl B~ Tl 2 (o)
- (n+1l{z—k) _ (n+1)2 fl 1 pl=agdy
_ (n+1l)(n—k) (n+1 [1 . (w)2*a} (19)
- 11— (l a)(2—a) n+1
_ (n+1)? + (n+1)® (k+1)2~>  (n+1)(k+1)
T 2—a (1—a)(2—a) (1-e) ?
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; Lespy
where we used Y0, ., (}Iﬁ) = A f,%—ii z'~*dz. Similarly, by taking the

sum of the coefficients in (18), we find

k L R e
s (S —8) =~ B = g zl-odx

l—-o 1=1 11— 0
__ (n+1)? (_k_)Q'—ﬁ _ (nt1)ek2-e (20)
T (1—a)(2—a) \n+1 ~ T=a)(z—a)’

. &
where % (n—i—l) —1 ~ Ji «'7%dz. By replacing the explicit formulae
(16), (17), (18), (19), and (20) in relation (15), we arrive to estimate Sy that

is S'k _ [1 _ (L)l_a] £n+12“k2“°’

n+1 (1—&)(2—&) (21)
E )T [()? L (e ()27 (nb1)(k41)
P Bt A

We plainly observe that S), does not exceed, in order of magnitude, the value
max{(n +1)*k*"%, (n+ 1)1*2k1~* (n+1)22~1k3-22} In any case this maxi-
mum is of order of n?. On the other hand, by studying (21) for 2+1 < k < 22,
we obtain that

B, conl® g+1gk§%”. (22)
We consider now the matrix Bz, the § x 7 block of A;' formed by deleting

the first and the last % rows and columns. We denote by S B, the kth row sum

of the matrix Bz, where the index k ranges from £ + 1 to 2*. Taking into

account (15), we infer

an
" Sp & S-S5 &
Sn.=F 3 (S-8)+ = 0 5 (23)
i=2+1 i=k+1

By making analogous calculations, as in the estimation of Sy, we find

~— 11— n+1)e k2-a_(ny2-a
SBk:[lﬁ(i) }( i Yl 3 )

1n_+1 - (1—[1)(2-@1 o (24)
4 (TL) @ [(n+13(_—;——k) n (n+1) ((k(-‘l-i}a)(Z:c{x?+l) )]
It is easy to understand that (24) implies
Sp, ~n?, g+1§k§1. (25)

We apply now a permutation transformation to the matrix A-! in such a way

that its block Bz will appear in the first 3 x § rows and columns. Then, the

permuted matrix is dominated to the first § x § block, with all the first 5 row
sums being of order n?. In this case Lemma 4.3 is applied to obtain relation
(14) that is

K(An) ~ p(AZY) ~ 2.
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Case 3: a = 1.

We follow the same steps as in the previous case:

L L
5= jz:%aﬁ% = 2 +1
xj(nJrl)/l1 1cﬁ’x—(n—l—l)log( _:1), (26)
S=2n+1)+ S =n+1)(2+1log(n+1)); (27)
S — 5= n+1)(2+log(n+l))—(n+1)1og(n+1)
=(n+1)(2 +log(7)). (28)

Now by substituting (26), (27), (28) in relation (15), we infer the following
estimate for Sy:

B, (n+1) log oL &
Sk ~ mrnEregmry it (1 + 1) (2 +log

(n+1)(2+log(k))
(nil)(w(log(gn;n) S pea(n+ 1) log (2%
(n+1) log
= 2+log(n+1) (2]{1 + Z =1 log( ))

(nt W) ((n — k) log(n + 1) — Tipan log(d)) -

7))
?) (29)

+

+

On the other hand

k k
3 log(i) & / log(z)dz = klog(k) — k + 1
i=1 1
and

Z log(7) /n log(z)dz = nlog(n) —n — klog(k) + k + 1.
i=k+1

By replacing the latter terms in (29), we obtain

= (n+1) log{ 2L
Sk = 2+log(gn(+f) )(k +k log( ) 1)

(n+1)(2+log(k _ n+l N (30)
+ (e HEW) (1 1og (24L) — klog (%) +n—k—1),

and hence the quantity S, does not exceed n? in order of magnitude. Fur-
fuhermore, by analyzing (30) for 2 +1 < k < 2 we obtain relation (22) that
is

- 3

Sy ~n2, +1gkgf.

|3
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As in the previous case, we consider the matrix Bz, the same 3 x § block of
A.', and we estimate the row sums Sp,, 2+1<k <2 je,

‘§Bk ~ ﬁ%—ﬂfﬁl—) (k — 7+ klog(k) — Zlog (ED

4 (ot tes(k) (3” k+ %"log (”’*1) - klog(”“))

2+log(n+1) 4

(31)

It is easily checked that (31) implies the same conclusion (25), as in the pre-
vious case. Applying again Lemma 4.3 as in (14), we find

K(An) ~ p(AZY) ~ n?.

Case 4: 1 <o < 2.

In analogy with the previous cases we estimate

B BT 1 n+1[/n+1\*!
! ~ Qg ik
5= Z( n+l)) (D) [, o a—l[( i ) J

J=1 n+1l
(32)
1 1
5':2"‘(n+1)°‘+5'1%(n+1)°‘[2a+ _1]—::1; (33)
o [na 1 1\

S-S (n+1) [2 +a_1(1—w—_1)], (34)

k1 O R (n:?u o g — gﬂ_ﬁ?‘_%_ﬂ
~ (ﬂ+1) f L (n+;£?;—k) (35)

n+1
= & |E&EA+ 1)+ +DE+1) - ﬁ?ﬂ(uz_%lL] :
T (S—8) = (n+ l)ak( 4L -
~ (n+ 1)k (20 + L) - S5 f T gl-agp (36)
= & o W) .
Substituting the explicit quantities (32), (33), (34), (35), and (36) in relation
(15), we deduce that

~ ntl [(ﬂ+1)"f 1 ] -
S~ metemrm] e (0 D% (27 + 2 - e

(n+1)* jl—o
a—1 =1

-1 u—l (37)
(n+1)2 294 24 (1- i1 )] { (1) (nd)(h1) (n+1)°“(k+1)2—“}
(:,.H_l)a[ga_i_ﬁ]_% (a—=1)(2—a) a—1 (a—1)(2—a)

A plain analysis of the main terms of (37) shows that the order of Sy, does not
exceed n?. Moreover, the study of (30) for 1Sk %T” leads to relation
(22), i.e

Sy, ~ n?, +15k,§%’”.

~|3

140



We consider once again the matrix Bz. Then

S’,B N n.+1 [(M—l) —1](7::) |:(k - _) (2& ﬁ) B %‘j—__{j(g‘ll;}

k (n+1)2 [2&+ ;|24 (38)
(n+1)%[2%+ 5 (1—ka ])] (1) ( (32 +1)2-0—k2-%) ()3 —k)
(n+l)°‘[2°‘+ L]-24d (a-1)(2~a) a-1 :

The analysis of (38) gives the same conclusion as (25), and then, by Lemma
4.3, we obtain relation (14), i.e., K(4,) ~ p(A;1) ~ n2.

Case 5: o = 2.

As in the preceding cases we have:

.:i(%ﬂ)z (n—i—l)fli:t;_zda::(nnLl)(ﬂ:l—l) (39)

= \2(n+1

S=4(n+1)*+ 5 = (n+ 1)(5n+ 4); (40)
S—Si~=n+1)bBn+4)—(n+1) (n;}-l _1) = (n+1)? (5_%); (41)

S S~ (1) S (55) T = (R + 1)(n— k)

=~ (n+ 1) f%+1 iz — (n+ 1)(n — k) (42)
= (n+1)*log (’;ﬁ) (n+1)(n — k);
Tha(5 - 80 ~ 5(n+ D%k - (n+ )Tk ()
~ 5(n+ 1)%k — (n + 1)2f”+1 5ty (43)

n+l

= (n+1)?(5k —log(k + 1)).

For the estimation of Sy we employ (39), (40), (41), (42), and (43) in relation
(15):

S;; e (n +1)2 (5k — log(k + 1))
n+1)(5— n
4! *5;(+4 (n+1) ((n+ 1) log (22) - (n — ¥))
n+1)2 —
{5;24 [5+ Tk +5(n+1)log(n + 1)
— (5n + 4)log(k + 1) — % log(n + 1)].

A straightforward conclusion is that S) does not exceed n®log(n) in order of
magnitude. On the other hand, by exploiting (44) for 1 < k < m, where m is
a constant integer independent of n, we obtain

(44)

S ~ n*log(n), 1<k<m. (45)
By the Perron Frobenius theory on nonnegative matrices, we find

(A7") = O(n”log(n)). (46)
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We consider the m xm matrix B,,, which is the submatrix of A ! formed by the
first m rows and columns. The estimation of the row sums S B, 1<k <m,
leads to

S5, ~ 2(n+1)% (5k — log(k + 1))
+ @;%ﬁm 1) ((n+ 1) log (2£) — (m — k)) %
= ;I_itl [5(n 41 —m)+ =% + 5(n + 1) log(m + 1)
— (5bn+4)log(k + 1) — 3—;5"1 log(m +1)].
Since m and k are constant independent of n, it follows that
Sp, ~n?, 1<k<m. (48)
By the interlacing law we obtain p(A-!) > p(B,,) ~ n? and therefore
p(AT) = 0(n?). (49)

In conclusion, from (49) and (46), we deduce that

k(An) ~ p(A71) = O(n*log(n)) N 2(n?).

Case 6: a > 2.

It is easily seen that the estimation of the quantities S;, S, S — S; and

>iek41 Si is just the same as in Case 4, when dealing with relations (32), (33),

(34), and (35), respectively. The only modification we need is to estimate

the quantity S°F | S — S;, by exploiting an alternative approximation since
k

Jo ! z'-%dz diverges for a > 2. More in detail we have
(8 = 8) m (n+ 1% (27 4 2y ) - S5 oLy i
~ (n+1)% (20: ﬁ) (n+1) fn+1 pl=2dp (50)

o |1 1 - Grye—z
:(n+1) [;\,(2“4»&?*)—(?(%3::5 P

We estimate Sy, by replacing (32), (33), (34), (35), and (50) in relation (15):

S ~ 2 [(2) ] (n+ 1)@ [ic (22 + ) - —‘-—ﬁ-f‘“*"_l)"]

k ~ (ﬂ+1)a[2a+ﬁ]_2_ﬂ a:—l)(cx—Z) (51)
(n+1) [2"‘+—(1 )] [(n+1)“(k+1)2‘“ o (n+1)(k+1)]
et L~ | e D2 @2 a1

Again we deduce that S) grows in order as n® . Moreover, by studying (51) for
1 < k < k, where k is a constant independent of n, we ﬁnd that both terms
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of (51) are of order n®. Thus

S ~n®, 1<k<k. (52)
By considering the matrix By, the submatrix of A formed by the first & rows
and columns, in the formula of the kth row sum of Bj the first term of (51)
appears unchanged, while the changes appear only in the second term. Thus,

Sp, ~n® 1<k<k. (53)
Finally, by Lemma 4.3 we obtain
R(An) ~ p(AZY) ~ e, (54)

and the proof of the theorem is completed. O

5 The case of higher order BVPs

The results of Theorem 4.4 can be extended in a straightforward manner to
cover the case where the BVP is of order higher than 2, i.e., our equations are
of the form

{(—l)k%(a(x)i—kku(m))_f(z) on =0, k=23

homogeneous B.C. on 012,

where the function a(z) has a root at Zy € Q of order c. In analogy to the case
of second order operators, we approximate (55) on a uniform grid of stepsize
h = (n + 1)71, using centered finite differences of minimal precision order 2.
As a consequence we find 2k + 1 band n x n linear systems A,(a)z = b.

The generalization of Theorem 4.4 takes the following form:

Theorem 5.1. Let {A,}n, An € R™™, be the sequence of matrices derived
from the descritization of the Semielliptic Differential Equation (55) with the
bounded coefficient function a(x) having a unique root at 0 of order a i.e.
a(z) ~ z® on D = [0,1]. Then, for the spectral condition number k(A,) of
the matriz A, which coincides in order with the spectral radius of A;!, there
holds:

n?k. 0<a<?2k,
k2(An) ~ { O(n**log(n)) N Q(n%*), o=2k, (56)
ne, a > 2k.
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The proof follows exactly the same governing ideas as the proof of Theorem
4.4 but with the mathematical manipulation becoming more and more com-
plicated and tricky as the order of the BVP increases. The reason for that
concerns essentially the formulation of the explicit form for the inverse of the
coefficient matrix A,. In Section 7 we give many numerical examples regarding
the case of BVPs with order higher than two, with all of them fully confirming
the theoretical results given in Theorem 5.1.

Remark 5.1. The assumption for the coefficient function regarding the unique-
ness of its root cannot be relazed to “many isolated roots”. The reason, which
has been mentioned also in [25), is that in this case the condition number grows
in an unpredictable (nonmonotone) way as the dimension of the problem tends
to infinity: in reality, the matriz A, may happen to be also singular for certain
dimensions. More specifically, performing various numerical experiments (see
Tables 9, 10, and 11 for a partial account on our findings), we have observed
that:

o For k=1,2,3 there exists a(x) such that max{a;} < 2k and ky(An) ~ n**;
more precisely, ra(Ay) = Q(n?*+), for some & > 0;

o For k=1,2,3 there exists a(z) such that max{c;} = 2k and ky(4,) =
O(n*log(n)) N Q(n%*); more in detail, ka(Ay,) = Qn2* ), for some § > 0;

o For k=1,2,3 there emists a(z) such that max{a;} > 2k and ko(A,) =
nmedest - more precisely, ro(Ayn) = Q(nm@{@}+8)  for some § > 0.

In Section 7 we report some examples concerning this case, and the conclusion
is that the condition numbers grow faster, when compared with the bounds in
Theorem 4.4 and Theorem 5.1: the reason is a kind of interference between the
sources of ill-conditioning represented by the different zeros (for a nice contrast
with the case of a unique zero, see the discussion at the end of Subsection 2.2).

6 Remarks on the 2D case

We consider the 2D problem

o (a(x,y)%u) = (b(w, y)a%u) ~ f(zv) (57)

with Dirichlet boundary conditions. Using the well-known five points formula
and by ordering the unknowns in the classic manner, we arrive to the n? x n?
linear system

Aun® = b,

where A, is a symmetric positive definite block tridiagonal matrix, with the
diagonal blocks being tridiagonal matrices and the off diagonal blocks being
diagonal ones.
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As we have mentioned from the beginning of this paper, the main contribution
of this work will be to give a guideline and to establish a theoretical framework
for dealing with the more interesting 2D case, which is of great importance
from both, theoretical and practical point of view. A trivial but immediate
application of our estimation of the condition number to the 2D case, is the
circumstance where the coefficient functions are of separable variables. In ad-
dition, we perform various numerical experiments and it clearly emerges that
the results of Theorem 4.4, under suitable assumptions, can be analogously
extended to cover also the 2D case. The following definition is useful.
Definition 6.1. Let f(z,y) be a nonnegative bounded function having a zero
at (zg,y0). We say that the order of zero is o € (0, 00) if there exists a finite
number p of curves C;, © = 1,...,p, defined by l;(x,y) = 0, passing through
(o, v0) and regular in it such that f ~ f and

B =5 (Rl 4 el

i=1
where g has a zero at (xg,yo) of order at least 8 > «.

We are ready to state our conjecture concerning the relation of the condition
of A, and the order of the zeros of the coefficient functions:

Statement 6.1. Let us assume that the coefficient functions a(z,y), b(z,y)
have zeros (zo, W), (21, y1) of orders o, o, Tespectively. Then for the spectral
condition number ko(Ann) of the matriz An, there holds:

n2, 0 < min{a,, @} < 2;
mz(Ann) ~ O(n2 log(n)) n Q(nz)! nlil"l{O!a,, ab} =4,
nmin{aa,ab}, min{aa, Otb} > 2.

7 Numerical experiments

In this section we present several numerical tests concerning both 1D and 2D
BVPs. We will start by discussing experiments on univariate BVPs of order
2, 4, and 6, respectively.

The quantity which is of main interest in our context is the estimation of

AIl'lin (Azm) )
WL L N
. B2 (Amin (Az(m+1))

We observe that p,, reflects the decrement rate of the minimal eigenvalue of
the coeflicient matrix A,.
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For the second order BVP in (1) we have used as coefficient functions the
following test functions:

5
|2

ai(z) = |z — %{, ax(z) = (z — .3)% as(z) = ‘3: T

and the results are given in Tables 1, 2, and 3, respectively. Regarding the
fourth order BVP i.e. (55) with k = 2, we use the functions

2
1 : 4 5
a4(z) = |z ——=| , os(z) =sin(z)*, ag(z) = z°,
@) = (0= 5], asle) =sin@)’, auto)
with associated results in Tables 4, 5, and 6, while, for the sixth order BVP
i.e. (55) with k = 3, we have chosen as coefficient functions

ar(z) = sin(z)?, ag(z) =27,

with related results in Tables 7, and 8.

Obviously, in order to perform a meaningful test for our theoretical derivations,
the considered coefficient functions have different analytical behaviors, and
with roots of order less, equal or greater than the order of the differential
equation. In all cases, we ascertain numerically the theoretical findings in
Theorems 4.4 and 5.1.

Table 1
1D, ki= lwa(z) = ’I— —%|
m b) 6 7 8 9

Amin || 2263 x 1073 | 5483 x 107% | 1.324 x 1074 | 3.2x10~% | 7.76 x 10~°

Pm 2.045 2.05 2.048 2.044 2.04

m 10 11 12 13 14

Amin || 1.889 x 107% | 4.612 x 10~7 | 1.129 x 10~ 7 | 2.773 x 10~8 | 6.824 x 10~°

om 2.034 2.03 2.026 2.023

For the case where a(x) has multiple roots in [0, 1] things completely change
as reported in Remark 5.1. Tables 9, 10, and 11 show this “irregular” behavior
for the quantity p,,.

a) k=2 alz)=z%z— 3|3,
b) k=2 a(e) = (z — 35)%(z — &4
¢) k=1 alz)=(n—.5)%"

For the 2D case, we consider the following four examples:

a) a(z,y) = b(z,y) =z +y,
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Table 2

1D, k= Lafz) = (x —.3)>.

m 5 6 T 8 9
Amin || 3-251 x 107* | 9.608 x 1075 | 2.063 x 10~® | 4.882 x 10=¢ | 1.179 x 1078
Pm 1.759 2.92 2.079 2.050 1.898

m 10 11 12 13 14
Amia || B-168 % 10T | 7282 10~ | 1762 % 10~° | 4.318 % 10~% | 1.193 % 10~°
Prm 2.119 2.047 2.029 1.943

Table 3
1D, k = La(z) = (z — m/4)5.

m 5 6 7 8 9
Amin || 5.206 x 1075 | 9.278 x 1075 | 2.46 x 1078 | 3.296 x 10~ | 5.446 x 1078
Pm 2.488 1.915 2.9 2.597 2.549
m 10 11 i2 13 14
Amin || 9.305 x 1079 | 2.282 x 107° | 3.633 x 10719 | 6.529 x 107! | 1.193 x 10~ 1!
P 2.028 2.651 2.476 2.452

Table 4
1D; fo= Dgld = ‘x— \ﬁ| :
m 5 6 7 8 9 10 11 12 13
pm || 3.646 | 3.961 | 3.996 | 4.038 | 3.995 | 4.151 | 3.851 | 4.022 | 4.034
Table 5
1D, k=2 a(z) = sin(z)?.
m 5 6 T 8 9 10 11 12 13
pm || 4.208 | 4.189 | 4.161 | 4.135 | 4.113 | 4.094 | 4.078 | 4.066 | 4.056
Table 6
1D, k=2 afz) = .
m 5 6 7 8 9 10 11 12 |13
pm || 4911 | 4.951 | 4.974 | 4.987 | 4.993 | 4.997 | 4.998 | 4.999 | 5
b) a(z,y) = 2° +y*, b(z,y) = 2° +¢°,
c) a(z,y) = z* +y° b(z,y) = (z +y)

d) a(z,y) = [z —y, bz, y)=lz— 3P+ vy —

1
2

P,

The results in Tables 12, 13, 14, and 15 fully confirm the statements formulated
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Table 7

1D, &:=3 ulx) = sin(z)*.
m 5] 6 7 8 9 10 11 12 13
pm || 5.853 | 5.929 | 5.965 | 5.983 | 5.992 | 5.996 | 5.999 | 5.999 | 6
Table 8
1D; B8 ] = 8%
m 5 6 T 8 10 11 12 13
pm || 6.846 | 6.922 | 6.961 | 6.980 | 6.990 | 6.995 | 6.998 | 6.999 | 6.999
Table 9 i
1D, k = 2, multiple root case: a(z) = z3|z — .3|2.
m ] 6 7 8 9 10 11 12 13
Pm || 5.01 | 2982 | 2.278 | 3.574 | 7.025 | 1.811 | 1.779 | 3.52 | 6.947
Table 10
B _ . 3 ; %2 L\4
1D, k = 2, multiple root case : a(z) = (9: — ﬁ) (a: - "ﬁ) .
m 5 6 7 8 9 10 11 12 13
Pm || 7.264 | 4.516 | 4.601 | 4.316 | 5.192 | 4.719 | 6.447 | 3.725 | 4.876
Table 11
1D, k = 2 multiple root case: a{z) = (z — .5)%x3.
m 3 6 7 8 9 10 11 12 13
Pm || 3.89 | 3.944 | 3.972 | 3.986 | 3.993 | 3.997 | 3.998 | 3.999 | 4
at the end of Section 6.
Table 12
2D case: a(z,y) = b(z,y) =z +vy
m 3 4 6 7 8
Pm || 1.826 | 1.911 | 1.956 | 1.978 | 1.989 | 1.995
Table 13
2D case: a(z,y) = 2% + 42, b(z,v) = (z +9)?
m 3 4 5 6 7 8
pm || 1.921 | 1.967 | 1.990 | 2.001 | 2.005 | 2.008
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Table 14
2D case: a(x,y) = 2° + ¢4, b(z,y) = x5 + ¢°

m 3 4 5 6 7 8
Pm || 2.885 | 2.949 | 2.979 | 2.992 | 2.997 | 2.999

Table 15
2D Case: a(z,y) = |z —y°, blz,p) =z — P+ |y - %

m 3 -4 3 6 7 8
pm || 2.757 | 2.871 | 2.934 | 2.967 | 2.983 | 2.991

8 Conclusions

In this paper we have studied the conditioning of semi-elliptic differential
problems (the elliptic case is plain thanks to monotonicity arguments). As
a main tool we have employed the notion of positivity in three different as-
pects: definite positivity, operator positivity (especially in Subsection 2.2), and
component-wise positivity (especially in Section 4). Our main result is that the
two sources of ill-conditioning, the low frequencies coming from the constant
coefficient Laplacian, and the space spanned by few canonical vectors related
to the position of the zero of a(z), do not interfere; conversely, we numerically
observe a bad interference, a kind of resonance, in presence of distinct zeros in
the coefficient a(z). Therefore, when a unique zero is considered, there is only
a superposition effect so that the size of the degenerating subspace, i.e. that
related to small eigenvalues, becomes larger, but the order of ill-conditioning
is not worse than that of the two factors separately. As a consequence, both
for designing multigrid methods or preconditioners, we can treat the two ill-
conditioned spaces separately and this of course implies a simplification in
the practical programming and in the theoretical convergence analysis (see
e.g. [21,24,26,4])). Finally, there is still the open problem of completing our
study in three directions: we would like to identify the constants hidden in
the equivalence relations of the main Theorems 4.4 and 5.1, we would like to
add more terms if the asymptotic expansion of the condition number of A4,
and, more important, we would like to include the more challenging multidi-
mensional setting. Indeed, as a final remark, we stress that partial results are
easily available, by repeating e.g. the same derivations as in Subsection 2.2 in
a multilevel setting: however a complete analysis is still missing.
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Oscillation Criteria of First Order Linear
Difference Equations with Delay Argument

G. E. Chatzarakis,® R. Koplatadze,” and I. P. Stavroulakis®

Abstract

This paper presents new sufficient conditions for the oscillation of
all proper solutions of the first order linear difference equation with
delay argument

Au(k) + p(k)u(r(k)) =0, k€N,

where Au(k) = u(k+1) —wu(k), p: N — Ry, 7: N — N and

i lim 7(k) = +oo. Examples illustrating the results are given. It is to
k—--00

be pointed out that this is the first paper dealing with the oscillatory
behaviour of the equation in the case of a general delay argument 7(k).

¢ Department of Mathematics, University of Ioannina, 451 10, Greece,
ipstav@cc.uoi.gr
b A. Razmadze Mathematical Institute Georgia Academy of Sciences,
1, M. Aleksidze st., Thilisi, Georgia

1 Introduction
Consider the first order linear difference equation with delay argument

Au(k) + p(k)u(r(k)) =0, ke N, (E)

where Au(k) =u(k+1)—u(k),p: N— R, 7: N — N and kﬁli’l k) =
+00.
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Strong interest in equation (E) is motivated by the fact, that it repre-
sents a discrete analogue of the delay differential equation (see [12] and the
references cited therein) '

z'(t) +p)z(7(t)) =0, p(t)>0, 7(t)<t for t>0.

By a proper solution of Eq.(E) we mean a function v : N,, — R, ny =
min{7(k) : kK € Np.}, N, = {n,n +1,...} which satisfies Eq.(E) on N, and
sup{|u(i)| : ¢ > k} > 0 for k € N,,,.

A proper solution u : N — R of Eq.(E) is said to be oscillatory (around
zero) if for every positive integer n there exist ni,m; € N,, such that
u(ni)u(ng) < 0. Otherwise, the solution is said to be non-oscillatory. In
other words, a proper solution u is oscillatory if it is neither eventually pos-
itive nor eventually negative.

In the last few decades the oscillation theory of delay differential equations
has been extensively developed. The oscillation theory of discrete analogues
of delay differential equations has also attracted growing attention in the re-
cent few years. In particular, the problem of establishing sufficient conditions
for the oscillation of all solutions of the equation

Au(k) + p(k)u(k —n) =0, ke N (E,)

has been the subject of many recent investigations. See for example [2-11,
13-16] and the references cited therein.

In 1989, Erbe and Zhang [6], proved that, if p(k) > 0, then either one of
the following conditions

- n"
or
k
limsup » p(i) > 1 (1.2)
k—+o0 i=k—n

implies that all solutions of Eq.(E;) oscillate.
In the same year, Ladas, Philos and Sficas [9], proved that the same
conclusion holds if p(k) > 0 and

n

lim inf (% ki p(i)) > (Tfl)—nﬂ (1.3)

i=k—n
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It is interesting to establish sufficient conditions for the oscillation of all
solutions of Eq.(E;) when the conditions (1.2) and (1.3) are not satisfied.
Many researchers focused on the improvement of the upper bound of the
ratio u(k — n)/u(k) for possible non-oscillatory solutions u of Eq.(E;). In
1993, Yu, Zhang and Qian [16], and Lalli and Zhang [10], trying to improve
(1.2) established some false oscillation conditions due to the fact that both
were based on an erroneous discrete version of the Koplatadze-Chanturia
lemma [8]. For more details the reader is referred to [5,3].

In 1995, Stavroulakis [14], proved that if

n+1 042
) and limsupp(k) >1— —
k—+o0 4

k-1
y -— lim i 1) <
0< a: lir—r»l.:&f ; p(i) < (

n+1

then all solutions of Eq.(E;) oscillate.

In 1999, Domshlak (5], and in 2000, Cheng and Zhang [3], established the
following lemmas respectively, which may be looked upon as discrete versions
of Koplatadze-Chanturia lemma [8].

Lemma 1.1 ([5]) Assume that u is an eventually positive solution of Eq.(E;)
and that

k-1
Z p(t) > a>0 forlarge k.
i=k—n
Then
o2
u(k) > —u(k —n) for large k. (1.4)

4

Lemma 1.2 (/3]) Assume that u is an eventually positive solution of Eq.(E;)

and that
k-1

p(i) >a>0 for large k.
i=k—n
Then
u(k) > a"u(k —n) for large k. (1.5)

In 2004, Stavroulakis [15], based on the above two lemmas, established
the following theorem.
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Theorem 1.1 ([15]) Assume that

k-1 n n—+1
O<a: _hllﬂ’j{'gz_kzn (n—i—l) .
Then either one of the conditions
o2
lim su >1—— 1.6
k—‘+oop i—-zn ) 4 ( )
or
lim sup Z (1) >1—a™ (L.7)
k—+oo i=k—n

implies that all solutions of Eq.(E,) oscillate.
In 2006, Chatzarakis and Stavroulakis [2], established the following lemma.

Lemma 1.3 ([2]) Assume thatu is an eventually positive solution of Eq.(E;)

and that
k-1

Z p(i) > a>0 forlarge k.
i=k—mn
Then
- l k 1.8
u(k) > mu(r’c— n) for large k. (1.8)

Based on the above lemma, they established the following theorem.
Theorem 1.2 ([2]) Assume that

k—1 " n+1
and
OJ2
imp 3 560>1- 755 Y

Then all solutions of Eq. (E;) oscillate.

In this paper, the authors improve the upper bound of the ratio w(7 (k)) /u(k+
1) for possible non-oscillatory proper solutions u of Eq.(E) and derive new
sufficient oscillation conditions. It is to be emphasized that this is the first
paper dealing with the oscillatory behaviour of Eq.(E) in the case of a general
delay argument 7(k).
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2 Oscillation Criteria for Eq. (E)

In this section we first establish two lemmas which will be used in the proof
of our main results.
Consider the difference inequality

Au(k) + q(k)u(c(k)) <0, ke N, (2.1)
where
g:N—R,, 0:N— N and klim o(k) = +oo. (22)
— 400
Lemma 2.1 Let
k-1
l{iﬁmjnf p(i) = a >0, (2.3)
i=1’(k)

o(k) <7(k) <k -1, p(k)<q(k) for keN (2.4)

and u : N, — (0,+00) be a positive proper solution of (2.1) for a certain
no&N. Then Eq.(E) has a proper solution u. : N,, — (0, +00) such that

0 < us(k) < ul(k) for k€N, (2.5)
where ny > ng s a sufficiently large natural number.

Proof. Let u: N,, — (0,400) be a positive proper solution of (2.1).
By (2.2) and (2.3), it is clear that there exists n; € N, such that

k—1
u(o(k)) >0 and Z p(i) >0 for ke N,,. (2.6)
i=7(k)
From (2.1), we have
u(k) =Y q(i)u(o(i)) for ke N,,. (2.7)
i=k

Assume that n, = min{7(k) : k¥ € N,,,} and consider the sequence of func-
tions u; : N, — R (i =1,2,...} defined as follows

uy (k) = w(k) for k€ N,.,

+oo
28] = Z_;p(i)uj_l(’r(i)) for ke N, 2.8)
u(k) for k€ [n,n) (1=23,...).
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By (2.4), (2.7) and using the fact that the function u is nonincreasing, we
have

us(k) = Zp(i) u1(7(7)) < Zq(i) u(o (1)) < u(k) = ui(k) for k> ny.
i=k i=k
Thus
uj(k) <wujq(k) for ke N, (j=2,3,...). (2.9)

Denote lim wu;(k) = u.(k) (according to (2.9) this limit exists). Therefore,
j—+oo

from (2.8), we get

u.(k) = > p(i)uu(r(3)) for ke N,,. (2.10)

i=k

Now, we will show that u,(k) > 0 for & > n;. Assume, for the sake of
contradiction, that there exists ny > n; such that u.(k) = 0 for k € N,
and u.(k) > 0 for £ € [n4,n3). Denote by N* the set of natural numbers n
for which 7(k) = ny and n* = min N*. By (2.10) and (2.4) it is clear that
n* 2 ny. Therefore, if ¢ = min{w.(7(7)) : 7(n*) <i<n*—1} > 0, by (2.4)
and (2.6), we have

wng) = 3 p (@) > 3 p)ulr@) e 3 pi) >0,
i=nz i=r(n") i=r(n*)

which, in view of u.(ng) = 0, leads to a contradiction. Therefore, u,(k) > 0
for k = .

Hence Eq.(E) has a proper solution wu, satisfying 0 < wu.(k) < u(k) for
k € Ny,. The proof is complete.

Lemma 2.2 Assume that u is a positive proper solution of Eq.(E), where

p:N—R,, 7:N— N is nondecreasing function,
() <k=1, for k€N, lim 7(k) = +oo (211)
and
k-1
léminf (i) = a € (0,1]. (2.12)
TS
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Then

A=\ 2
lim sup (k) € (1 i a) ; (2.13)
k—+co U(k -+ 1) o
If, additionally, p(k) > 1 — /1 — « for large k, then
, uw(t(k)) l—ao++v1l-«a
| < : 2.14
PP T o

Proof. By (2.12), it is clear that, for any ¢ € (0,a) there exists
ng = ng(e) € N such that

k-1

p(i) >a—c for k& Ny,. (2.15)
k)

=7

—

Since u is a positive proper solution of Eq.(E), then there exists n; € N,
such that
w(t(k)) >0 for k € Ny,.

Thus, from Eq.(E), we have
u(l +1) — u(k) = ~p(k) u(r()) < 0

and so u is an eventually nonincreasing function of positive numbers.
From (2.15), it is clear that, if w € (0, — &), there exists k* > k such
that

k*—1 k*
D_p(i) <w and 3 p(i) > w (2.16)

This is because in the case where p(k) < w, it is clear that, there exists
k* > k such that (2.16) is satisfied, while in the case where p(k) > w, then
k* = k, and therefore

k*—1 k-1 k* k
Z p(i) = Zp(i) (by which we mean) =0 < w and p(i) = Zp(z') = p(k) >w.
i=k i=k i=k i=k
That is, in both cases (2.16) is satisfied. Thus
k-1 k*—1 k*—1
3 ili= 3 = s e
i=7(k*) i=7(k*) i=k
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Now, summing up Eq.(E) first from k to k* and then from 7(k*) to k — 1,
and using the fact that the function u is nonincreasing and the function 7 is
nondecreasing, we have

u(k) - u(k® + 1) Zp( (Zp ) ) 2 w u(r(k))

" u(k) > u(k™ + 1) +wu(7 (k%)) (2.17)
and then
fei k-1
u(T(k*)—u(k) = Y p(i) u(r()) > ( > P(i)) u(7(k-1)) > [(a—e)—w]u(r(k—1))
i=7(k*) i=7(k*)
u(r (k")) = u(k) + [(o — &) — wju(r(k — 1)). (2.18)

Combining inequalities (2.17) and (2.18), we obtain
u(k) > w(k™ 4+1) + wlu(k) + (& — &) — w)u(r(k — 1))]
or
u(k) = WU(T(/& ~1)). (2.19)
Observe that the function f : (0, &) — (0,1) defined as

wl(a—e) - u

flw): = (2.20)

1—w

attains its maximum at w =1 — /1 — (a — ¢), which is equal to

frax = (1= /1= (aegz-:))z_

Thus, forw=1- /1 - (a—¢) € (0,a — &) inequality (2.19) becomes

w(k) > (1- m)z (== 1))

or

“(ngk") D) (1 i “;:ia_ 6)) (2.21)
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and, for large k&, we have

u(r(k)) _ (1—!—1/1H(a~5))2‘

u(k +1) a—¢
Hence, )
lim sup u(7(k)) < 1+ +/1—(a—e¢)
k—too U(k +1) oa—c

which, for arbitrarily small values of ¢, implies (2.13).
Next we consider the particular case where p(k) > 1 — /1 — .
In this case, from Eq.(E) we have

u(k) = u(k +1) + p(k) u(t(k)) > (1 — V1 — a)u(r(k)). (2.22)

Now, summing up Eq.(E) from 7(k) to & — 1, and using the fact that the
function w is nonincreasing and the function 7 is nondecreasing, we have

k— k-1
u(7(k))—u(k) = Z ( 2. P(i)) w(7(k=1)) Z (a—e)u(r(k—1))

i=7(k)

or
uw(T(k)) = u(k) + (o — €) u(r(k — 1)). (2.23)
Combining inequalities (2.22) and (2.23), we obtain

u(k) 2 (1= V1= a)u(k) + (@ - e)u(r(k — 1))]

u(r(k — )) l-a++y1-«a
u® = afao) .
and, for large k,
(’r(k)) 1— o+ m
u(k + 1) oo —¢)
Hence
R u(T (k)) l—a++V/1-«a
ktoo Uk + 1) ala—e)

The last inequality, for arbitrarily small values of e, implies (2.14). The proof
is complete.
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Theorem 2.1 Assume that 7(k) < k and

o(k) =max{7(s): 1<s<k, seN} (2.25)
If .
limsup Y p(i) > 1, (2.26)
BoH00 k)

then all proper solutions of Eq.(E) oscillate.

Proof.  Assume, for the sake of contradiction, that ug : N,y — (0, +00)
is a positive proper solution of Eq.(E).
Since the function o is nonincreasing and o(k) = max {7(s) : 1 < s <
k, se N } then, for sufficiently large k € N, uo satisfies the following
inequality
Aug(k) + p(k) uo(c(k)) < 0.

Summing up the last inequality from o (k) to k, and using the fact that the
function ug is nonincreasing and the function ¢ is nondecreasing, we have

wa(a(h) :Z(‘L) p)-1) <o

Therefore, for sufficiently large k

which contradicts (2.26). The proof is complete.

Remark 2.1 In the special case of Eq.(Ey) the above condition (2.26) leads
to the condition (1.2) presented in [6].

Theorem 2.2 Assume that
k—1
lim inf p(i) = a € (0,1] (2.12)

k— 400
i=7(k)
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and

lim sup Z p(i)>1—(1-v1-@a)", (2.27)
k—+o00
i=o(k)
where
o(k)=max{r(s):1<s<k, seN}. (2.25)

Then all proper solutions of Eq.(E) oscillate.
If, additionally, p(k) > 1 — /1 — « for large k, and

k
1—+/1-
lim sup Z i ol

)p(i) il — B o (2.28)

k—+o0 j—a(k

then all proper solutions of Eq.(E) oscillate.

Proof. We will first show that

k—1
lim inf Z{k p(i) = a. (2.29)

—+o0
)

Indeed, since 7(k) < o(k), then by (2.12), it is obvious that

k-1 k-1
o A & Tom N _
lim 1nf. p(i) < lilililgg -} p(i) = a. (2.30)

Thus, there exists a subsequence {k;};-% of natural numbers such that &; T
+oo for i — +oo and

k-1 k;—1
liminf 3 p(i) = lm > p(5). (2.31)
i=a (k) j=c (ki)

On the other hand, from the definition of the function ¢ and taking into

account that klim 7(k) = +oo for any k; (¢ = 1,2,...) there exists k; < k;
— 400

such that o(k) = o(k;) since k; < k < k;, _ﬁE’l ki = 400, and o(k) = 7(k})
(1= 1; 2+ )« Ehus

ki—1 ki—1 ki—1 ki—1
SoopG)= D )= > ()= Y p(H). (2.32)
J=o(k;) g=o(k;) j=o(k!) J=7(k})
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Combining inequalitites (2.31) and (2.32), we obtain

k-1 k—1
o o 1 s oy
lér_r’li{.lof 2 p(i) > Iélil_:ilof A_E(k) p(i) = a. (2.33)

The last inequality together with (2.30) imply (2.29).

Now assume, for the sake of contradiction, that w is a positive proper
solution of Eq.(E). Then, for sufficiently large &, the function u is a positive
proper solution of

Au(k) + p(k)u(o(k)) < 0.

By Lemma 2.1, the equation
Au(k) + p(k)u(a(k)) =0 (2.34)

has a positive proper solution u. : N,, — (0,+0c0), where ng € N is suffi-
ciently large.
Since (2.29) is satisfied, inequality (2.13) becomes

ra— ) (1+m)z

k—+00 U*(k o 1) - (o7

(2.35)

or, if p(k) > 1—+/1 — « for sufficiently large k, then inequality (2.14) becomes

, u(o(k)) 1l—a++/1—a
lim sup = .
k— o0 u*(k + 1) a?

(2.36)

In the case that (2.35) holds, for any € € (0, (1—+/1 — «)?) and for sufficiently
large k, we have

u(k+1) > (1 = vV1—a)? —e)u.(o(k)). (2.37)

Now, summing up Eq.(2.34) from o(k) to k, and using the fact that the
function u. is nonincreasing and the function ¢ is nondecreasing, we have

w0 (k) 2wk + 1)+ | D p(i)) u. (0 (k)). (2.38)

i=c(k)
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Combining inequalities (2.38) and (2.37), we obtain

us(o(k)) > ((1 —V1- a)2 —e+ Z p(i)) us(o(k)).

i=a(k)

Hence

lim sup Z p(i) <1—(1-v1- Oz)z—l-s1

s BT
which, for arbitrarily small values of £, becomes
k
lim sup Z p(i) <1—-(1-vV1- 04)2.

k—+c0 i=erfl)

This, contradicts (2.27).
In the case that (2.36) holds, following a similar procedure, we are led to
the inequality

which contradicts (2.28). The proof is complete.

Remark 2.2 If o > 1, by (2.8), it is obvious, that the conditions of Theorem
2.1 are satisfied and therefore all proper solutions of Eq.(E) oscillate.

Corollary 2.1 Assume that

k-1 - n+1
;= limi ) <
Par =lnig 2. P0= ()
and "
& ; 2
lim sup Z p(H)>1—-(1-v1-0a)" (2.27)
k——+oo ikt

Then all proper solutions of Eq.(Eq) oscillate.
If, additionally, for sufficiently large k, p(k) > 1 —+/1—c, and

k
l1—+1—«o
Eaesn i 5 e s e T 2.98'
m sup > () — (2.28')

i=k—n

then all proper solutions of Eq.(E;) oscillate.
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Now we present an example in which the condition (2.27") of the above
Corollary is satisfied, while none of the conditions (1.2), (1.3), (1.6), (1.7)
and (1.9), is satisfied.

Example 1 Consider the equation
z(k +1) — z(k) + p(k)z(k - 12) =0, £=0,1,2,..,

where

35 35 6
1200° p(13k+13) = —+—, k=0,1,2,....

1200 10’
Here n =12 and it is easy to see that

k—1 13
a—hmmf Z p(7) 39 (1—2-) 2 (0.3532

p(135+1) = 5. = p(18k+12)=

= P T I00 T\ 13
lim sup Z ——+E—0950
k—oo imk—12 100 ].0
and
lim su Z e e o D B = [l T ) VO
o = 1200 T 1000 = et

We see that the condition (2.27°) of Corollary 2.1 is satisfied and therefore
all solutions oscillate. Observe, however, that

0.9791 < 1,

19\ 13
a=0.35< (E) =~ (0.3532,

o
0950 < 1- i 0.9693,

0.950 < 1 — &' ~ 0.9999,

and
2

(8%
0950 < 1 — ——> — ~ 0.9628.
ST 3e—a)

Therefore none of the conditions (1.2), (1.3), (1.6), (1.7) and (1.9), is sat-
isfied.
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Theorem 2.3 Assume that « € (0, 1] and there exist ng € N and a function
D € Lioe(R4+, Ry) such that

t2p(t) is nondecreasing function, p(i) < p(¢) for i € Ny, (2.39)

and
k—1

lim inf p(s)ds > a. (2.40)
ot Jrk)-1
Then condition (2.27) (or, if for sufficiently large k, p(k) > 1 — /1 —q,
condition (2.28)) is suffictent for all proper solutions of Eq.(E) to oscillate.

Proof. In view of Lemma 2.1 and Theorem 2.2, to prove Theorem 2.3,
it sufficies to show that

l’icm inf p(i) > a. (2.41)

By (2.39) and (2.40), we have

G—=1)2_ [ ds _ e i—1 [ _
) [ G2 Y [ Aeds>

k-1 k-1

>op@) = Y

i=7(k) 1=7(k) 1=7(k)
#(k)—1 &= / _ (k) — 1 /‘H _
—_— pls)ds = p(s)ds. (2.42
7(k) mz(;) i—1 (=) 7(k) Jrk)-1 (s) ( )

Since 7(k) — 400 for k — +oo, inequality (2.42), in view of (2.40), implies
(2.41). The proof is complete.

Corollary 2.2 Consider Eq.(E) and let ¢ € (0,4+00), f € (0,1), cInf > -1
and for large k

p(k) 2 2, (k) < [BH]
and "
lim sup Z p(e) >1—-(1-v1- 05)2,
AR T

where o = In B¢ and [Bk] denotes the integer part of Bk. Then all proper
solutions of Fq.(E) oscillate.
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Proof. Take p(t) = ¢ and o = In 57°. Then it is easily shown that the
conditions of Theorem 2.3 are satisfied.

Analogously, if we take p(t) = 5%, we have the following

Corollary 2.3 Consider Eq.(E) and let ¢ € (0,+00), 8 € (0,1), clnf8 > —1

and for large k
c

p(k) 2 71— (k) < [F]

and %
lim sup Z pi) >1—-(1-vV1- a)z,
k—+o0 i=[kF)

where a = In ¢ and [kP] denotes the integer part of k®. Then all proper
solutions of Eq.(E) oscillate.
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OSCILLATIONS OF FIRST ORDER IMPULSIVE DELAY
DIFFERENTIAL EQUATIONS

by

)

2
M.K. GRAMMATIKOPOULOS“’, M.B.DivitrovA® axp V.I. Donev?”

First order impulsive delay differential equations are studied, where
the fixed moments of impulsive effect (the jump points) are considered as
up-jump points. Sufficient integral conditions for all solutions of these type
of equations to be oscillatory are established.

Key words: Oscillation, impulsive differential equations, up-jump

points, retarded argument.
AMS (MOS) subject classifications: Primary 34A37, 34K11.

1. Introduction

Impulsive delay differential equations can model various processes and phenomena which depend
on their prehistory and are subject to short-time disturbances. Such processes occur in the theory
of optimal control, theoretical physics, population dynamics, pharmacokinetics, biotechnologies,
industrial robotics, economics, ete. Starting from the work of Mil’'man and Myshkis [9], in resent
years there has been much current interest in studying of impulsive differential equations. Among

numerous publications, we choose to refer to [1]-[12].

Consider the first order impulsive delay differential equations of the form
o' (t) +q(t)z(t) + p(t)a(t —h) =0, t # 7% (E1)
with the impulsive condition
Az(ry) = z(mx + 0) — z(7% — 0) = Ip(x(mx), x(7 — b)), KEN
and with the initial condition
z(t) = p(t), —h <t <0; ¢ € C([—h,0]; R).

Here the delay i > 0 is a constant and 7, € (0,+00), k € N are fixed moments of impulsive
effect (the jump points), which we characterize as down-jumps when Az(7;) <0, k € N and as

up-jumps when Az(r;) >0, ke N ).
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Denote by PC(R, R) the set of all piecewise continuous on the intervals (Tks Tkt1], k € N
functions u: R — R which at the jump points 7,k € N are continuous from the left, ie. u(m —
0) = limy—s,—ou(t) = u(7), and may have discontinuities of first kind at the jump points
Thy k € N.

We also denote by i[7o,t) the number of fixed jump points 7, € [r,%), k € N, for ¢ > 7.

We clarify that

0, for 7 € [m, M),
’i[Tg,t) _ 0, for T {7’1,1’2),

k, for 7 € [15,7ky1), kK € N.

Our aim is to establish sufficient conditions under which the equation (E1)is oscillatory. In

order to obtain our results, we need the following

Lemma 1 Let 7, k€ N be fixed moments of impulsive effect (the jump points) with the

property

0<Ti<T2<... <1} <..., m Tp = +00

li
t—+oco
Then for every fixed h > 0 and for every t € [h, +00)

M = max i[t— h,t) < +co,
te[h,+o0]

Le. the number of the fixed moments of impulse effect 7, € [t — h, t), k € N is finite.

Proof.  Since, by the properties of the sequence 75, k € N, it follows that lim Sup T =
+00, we conclude that the only accumulation point of this sequence is that +cc. Acccf;l?nogly, for
any number T' > 0 there is an ng € N such that for every n > ng we have 7,, > 7. That is, the
number of the fixed jump points in every finite interval of the form [T — h,T) is a finite number.
The proof of the lemma is complete.

Throughout this paper, unless otherwise mentioned, we will assume that the following hy-

potheses are satisfied:
(H1) 0< << ... <7 < .oy limp_y00 7 = 400 and
0 < min {7p4; — 7%} < max {741 — 7} < 400,k € N ;

(Hz) The function p : PC([0, 00), (0,00)) (resp. the function g : PC([—h, c0), R) with points
of discontinuity 74,k € N, where it is continuous from the left, i.e. p(7, — 0) =p(7%),k € N (resp.
9(me — 0) = g(7k),k € N );
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(H3) The function I, € C(R% R) for allv € R and k € N has the following sign property
ulg(u,v) >0 for u #0.

Moreover, the following notions will be used throughout this paper.

A continuous real valued function u defined on an interval of the form [a, +00) eventually has

some property if there is a number b > @ such that u has this property on the interval [b, +00).

A real valued function u piecewise continuous on the set [—h,00)\{7x}7>; and continuous
from the left at the jump points 74,k € N with initial function ¢ € C([—h,0]; R) is said to
be a solution to Eq.(E1) if u(t) = ¢(t) for every t € [—h,0] and u(t) satisfies Egq.(E;) for all
sufficiently large ¢t > 0.

Without other mention, we will assume throughout that every solution w(t) of Egq.(E;), that
is under consideration here, is continuable to the right and is nontrivial. That is, u(t) is defined

on some ray of the form [T, +oco) and
sup {|u(t)|: t > T} > 0 for each T > T,,.

Such a solution is called a regular solution of Eq.(E}).

As usual, a regular solution of Fq.(F1) is called nonoscillatory if it is eventually of constant
sign , i.e. if it is eventually positive or eventually negative. Otherwise, it is called oscillatory.
Furthermore, Eq.(F)) is called oscillatory if every its regular solution is oscillatory. Otherwise,

it is called non-oscillatory.

2. Main results

In order to achieve our goal, we begin our investigation with a special case of Fq.(F1). Namely,

we consider the first order impulsive delay differential equation
z'(t) + p(t)z(t —h) =0, t # 7 (E2)
with the impulsive condition
Az(me) = z(me + 0) — z(1, — 0) = L{z(7%), z{7x — b)), KEN
and with the initial condition
z(t) = @(t),—h <t < 0; 0 € C([—h,0]; R),

which results from Fg.(E1) in the case where the function ¢ is identically zero on the interval
[—h,c0).

‘We start with the following
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Lemma 2 Let x(t) be a non-oscillatory solution of Eq.(Es) and assume that the hypotheses
(H1) — ( H3 ) are satisfied. Suppose also that:
(C1) There is a positive constant L such that | Iy(u,v)|< L|u| foru#0,veR, ke N
and
t
) 1 'f/ ds>L1+L)M, M= [t — b, t).
(C3) lipn hp(s) s2g(1+1) teﬁ?foo]l[ )
t—

Then W(t):x:(_t)h ! js an eventually bounded function.

Proof. Since the negative of a solution of Egq.(Es) is again a solution of Eq.(E2), it
suffices to prove the lemma in the case of an eventually positive solution. So, suppose that z(t)
is an eventually positive solution of FEgq.(E2). That is, there is a o > 0 such that z(t) > 0
for t > tp, while x(t — h) > 0 for t > tg + h = t;. Therefore, from the impulsive condition of
Eq.(E3), in view of the hypotheses (Hz) and ( Hs), it follows that z/(¢) < 0 and By > 0
for ¢,7, = t1,k € N .Thus, z(t) is a decreasing function on every interval (They Tkt1): Tk = t1,
k € N and it has discontinuities of the first kind at the points of impulse effect 7, € Ry, k € N,

considered as up-jumps.
Remark that, from the impulsive condition of Eq.(E), using (C;), we find

z(rp +0) | Ie(z(7s), (1t — R)) Lz(7y)
x(m) bt z(Ty) z(7y)

£ 14 =1+L, ke N. (1)

In order to prove our lemma, consider now the interval of integration (t,t + %), t > t; of
Eq.(E2) and the number of the discontinuity points i[t,¢ + £) in it. Depending on the location
of the points ¢ — h and t with respect to the jump points 73, k € N, we distinguish the following

five possible cases.

Case 1. Whent—h, t € (T, Te41], £ € N and ezactly one of the following holds: either
ift,t + L) =0 or elsed[t,t + by=1.

Remark that, if ¢[t,t + %) = 1, then the only possible point of discontinuity in the interval
(t,t+ %) is the point 7j41.

In this case, integrating FEgq.(Es3) from t to t + %, t> 1t + %, we obtain

t+4
z(t + g) —z(t) — Z In(z(7s), z(m — h)) + / p(s)z(s — h)ds = 0,
t<Tn St 3 t
and hence we find
t+4 t+4
@+ S L(a(m)a(m - b)) > f Bla)Bls —R)ds > f plalile—H)ds,
tSTnSt"'% i thry
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where ¢y, = max(f,maz,., o, nTn). Observe that, if ift,z + %) = 0, then tpr, = ¢, while if
e S 2

ift,t+ %) = 1, then tps, = Ti41. Now, applying the assumption (C;) to the last inequality, we see

that

t+2
h
) +L Y alm) 2 a-3) / pla)ds
35‘?’,—;334—% tn.jl
which implies that
t+2
! h i
o) + La(®)ilt e+ 3) 2 o) + L Y w(m) 2 alt—3) [ p(s)ds,
tSTnSt"'g‘ - t‘Ml
and hence we get
z(t — &) - 1+ Lift,t + &) @
z(t) T t+k '
J p(s)ds
tar
Next, integrating Fg.(F3) from ¢ — —';‘- to ¢, ¢ — % > t1, we see that
i t
z(t) — z(t — 5) + / p(s)z(s — h)ds =0
=
from where we obtain .
h
z(t — E) >xz(s—h) / p(s) ds
)
and so we see that
t—h 1
R (3)
20 ] p(s)ds

h
=g

In view of (2) and (3) and using the decreasing character of the function z(t) on every interval

(ks Thr1], Tk = t1, k € N, we easily conclude that

a(t—h) __ 1+Lift,t+3)

<=m ST @
J p(S)dstf p(s)ds
t*-% My

This shows that the function w(t), ¢ > ¢; is bounded and proves our assertion in Case 1.
Case 2. Whent — h,t € (Tk, Tit1), K €N and ift,t+2) > 1.
In this case, it is always possible to choose a sequence of points & € (7, Tk+1], [ =1,2,...,7

with £ =t — h and &, = t, where for he, = & — §-1,0 = 2,...,,7 , as in Case 1, exactly one of
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the following holds: either (£}, & + %h&) = 0 or else 1[§, & + %h&) = 1. Then, for each pair &_,,

&, 1=2,...,7, as in the proof of Case 1, we obtain

x(&;_l) < 1+L3‘[£h££+ %h‘&)

1< ; b}
2@ - g et &
| we)ds [ p(s)ds
&i—3he, Ery,

where ¢, , = max(&;,marﬂ& <ra<éi+ihg Tn). In view of (5), we easily conclude that

z(61) z(€2) z(&—1) _ =z(t—h) 1+ Liléy, & + §he;)
P &) e~ em S Al eIt
- | p(s)ds . [ p(s)ds
£1—3he, Ma i

which proves our assertion in Case 2.

Case 3. When t € (Tiq1, Tha2], t — h € (Th, Tkt1], kK € N and ezactly one of the following
holds: either i[t,t + %) =0 or else i[t,t + %) =1,

Remark that, if [t ¢+ %) = 1, then the only possible point of discontinuity in the interval
(t,t+ %) is the point 7js.

In this case, because of the up-jump at the point 7j1.1 (Az(7%41) > 0 for 741 > t1), depending
on the value of h > 0 it is possible to have either (a) z(t — h) < z(t) or (b) a(t — ) > z(t).

If (a) holds, then (1) implies that

1 < I(Tk+1) < CC(t = h)
1+ L7 a(ne1 +0) = =2(2)

=1 (6)

which proves our claim in this case.
Assume now that (b) holds. In this case integrating Eq.(Es) from ¢t to t + Aot>t+ b
and then from ¢ — —';5 tot, t— 52‘— > t1, as in the proof of Case 1, we derive (2) and
z(t—h) _ 1+ Lift— Bt
DT s

ty

()

respectively, where tj;, = max(t — %,maﬂ:t_&q <;Tn) . Remark that, if [t — %,t) = (), then
2=Tn>
tay, =t— 2, while if i[t — &) = 1, then tp, = 7p11.

By (2) and (7), taking into account the fact that z(¢ — h) > z(t) , we conclude that

a(t—h) _ (1+Lift — §,8))(1 + Li[t, ¢ + §))

1<

- o) T ¢ t+3 ’
[ p(s)ds [ p(s)ds
targ tary

which is similar to (4) and proves our assertion in Case 3.
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Case 4. Whent € (Tpy1,Tk42), t—h € (T, Tkt1), K €N and it,t + %) el

Here, as in Case 3, it is possible to have either (a) z(t —h) < xz(t) or (b) z(t — h) = x(t).
If (a) holds, then we derive (6) which proves our assertion. So, assume that (b) holds. In this
case, it is always possible to choose a sequence 7; € (7, Thr1], ¢ = 1,2,...,5 withng =t—h, and
such that for Ay, =n; — 71, i =1,2,..., 5, as in Case I, exactly one of the following to be hold:
either i[n;, 7; + %hm_) = 0 or else ¢[n;, m; + %hm) = 1. Then, as in the proof of Case 1, for each pair

7;—1 and 7;, ¢t =1,2,...,s we obtain

1 z(1i—1) » 1+ Li[ns, 7 + 3h,,)

8
o) o i, ®)
[ p(s)ds [ pls)ds
= by, Iy,

where ¢z, ; = max(7;, MALy, < <ty Tig)s

Since z(ns) € (Tk, Tk+1], we may choose a point £ < ¢ such that & € (Tr~1, Tr+2], and, as in
Case 3, ns and & for h; = & — 1, to satisfy exactly one of the following: either i[{;, &1 + %hl) =
or else i[£1,&1 + %hl) = 1.Then, for the pair 7, and &; , as in the proof of Case 3, we obtain

z(ns) (1+ Li[& — h1,&1))(1 + Lifé, &1 + $R1))

be z(£1) ¢ E1+ih =Lalt) 4
) [ p(s)ds ) I p(s)ds

h _
where tpg,, = max(& — _2L=m‘15’3£1~§h15-rn5§17n) , tm,, = max(&;, mam&gfﬂ,gfﬁéhfn)'

Now, in view of (8) and (9), we conclude that

(o) &(m) z(ns) _ z(no) _ a(t—h) 1+ Lilni,n; + 3h,,)
LS S atm) 2 — =) — =@y S re® 1 — TR
=] plsyds [ p(s)ds
Wi_%hni Iy

i.e. the function -Ii%;_ﬁ)l is bounded.

Finally, since the points £; and ¢ with & < t belong to the same interval (7341, 7)+2], applying
Cases 1 or Cases 2, we prove that the function %(%—) is also bounded.

z(t—h) z(&1) __ =(t—h) __
=) w0 = e = w(t) for

So, from the above observation, it follows that the function

t > t; is bounded.
Case 5. When t € (Tgq1,Tk42), while t — h € (Thepm, T(k—m)+1], k& € N for some fized

m € {1,2,..., M}, where M = max i[t— h,t).
telh,+00]

In this case for some fixed m € {1,2,3,...M} we see that

T Sb— B Tlh—m)+1) < Tlhom)+2) < Tk < Tt < T < Thea, ke N
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Let & =t — h. Let also §; € (T(k_m)+j,7{k_m)+j+1], J=12..,m+1 be a sequence
of points with &p,41 = t, for which exactly one of the previous cases holds. Then, for each
pair &1, &, j = 1,2,..,m + 1, as in the proofs of the previous cases considered above, we

derive that each of the functions 5"%-"5—)1), J=1,2,..,m+1 is bounded. Therefore, the function
zgg% zgg;%rﬁgﬁ) m?é(f:ﬂ) = wg(;)h) = w(t) for ¢ >t is also bounded.

The proof of the lemma is complete.

Now we state our first theorem which ensure that all solutions of Eq.(Es) are oscillatory.

Theorem 1 Assume that the hypotheses (H;) — ( Hs ) are satisfied. Suppose also that:
(Ci1) There is a positive constant L such that | Ii(u,v) |<L|u| foru#0,veR, ke N

and

t
imi >1 M = it —
(Cz) llggfté p(s)ds >=(1+L)M M teI[Il}ixoo] i[t — h, t).

Then the equation (E2) is oscillatory.

Proof. As in the proof of Lemma 2, we consider an éventually positive solution z(t) of
Eq.(E3) and a t1 > ¢+ h > 0 such that z(t) > 0 and (¢t — k) > 0 for ¢ > ¢;. Then, again as in
the proof of Lemma 2, from the impulsive condition of Egq.(E;), using (Cy1), we find

(e +0) _ + Te(a(7e), 2(mk — 1)) 1. 220 _ 4 +L, ke N. (1)
x(Ty) (%) #(7k)

Next, divide Eq.(E2) by z(t), t > ¢; and integrate from ¢t — h to ¢t to derive

lnm(t_h)+ 5 lnw=/p(s)x(s__hlds,

@ G 2T

where, by Lemma 2, w(t) = rg—(_t)hl, t > t1 is a bounded function. From the above expression, in

view of (1), we find

t
w1+ L)Y 2w ] @+L)>w [ pe)ds (10)
t—h<T, <t t—h
where
w = litm inf w(t), t > t.

Clearly, (10) implies that

t

_ L M

lltrgégf/p(s)ds<g(l+L) g
t—h
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which contradicts (Cz). The proof of the theorem is complete.

As an immediate consequence of Theorem 1, we have the following

Corollary 1 Suppose that all assumptions of Theorem 1 are satisfied. Then the corresponding

to the equation (Es):

(a) inequality
2'(t) +p(t)e(t—h) <0, t# 7 (N2,<)

Az(m) € I(z(1p),z(x — h)), ke N
has no eventually positive solutions;

(b) inequality
a'(t) +pt)z(t —h) 20, t # 7 (Na,2)

Az(tg) =2 I(z(m), z(mx — ), k€N

has no eventually negative solutions.

The proof of Corollary 1 is similar to the proof of Theorem 1 and so it is omitted.
Our next result concerns the oscillatory character of FEgq.(E7). More precisely, we establish

the following

Theorem 2 Assume that the hypotheses (H;) — ( Hz ) and (C;) are satisfied. Suppose also that

(C3) 11m1nf f p(s) exp(/ u)du)ds > (1+L) M

Then the equatron (E1) is oscillatory.

Proof. Since the negative of a solution of Eq.(E}) is again a solution of Eg.(E7), it suffices
to prove the theorem in the case of an eventually positive solution. So, suppose that z(¢) is an
eventually positive solution of Eq.(E;). That is, there is a to > 0 such that xz(¢) > 0 for ¢ > {g,
while z(t — h) > 0fort > ¢+ h = t;. Set

e z(t)e:cp(/ g(s)ds), t > t1. (11)
0
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Substituting (11) into Eg.(E;), we obtain
#() +p1(t)z(t —h) =0, t # 7 (12)

with the impulsive condition

Az(1g) = Jk(2(13), 2(Ts — k), k€N

where
pi(t) = p(t) eap( [ g(s)ds), t 21
t—h
and
Tk Te—h Tis
Ji(z(1), 2(T—h)) = Ik(z(Tk)ezp(—/q(s)ds) , 2(Tr—h)exp[—( j q(s)ds)emp(f q(s)ds)]),k € N.
0 0 0

Since Eq.(12) is of the form of FEg.(E3) and the functions p; and J;, k € N satisfy the

assumptions of Theorem 1, the conclusion of Theorem 2 is obvious.

Theorem 2 furnish the following

Corollary 2 Suppose that all assumptions of Theorem 2 are satisfied. Then the corresponding

to the equation (Ej):

(a) inequality
2'(t) + q()z(t) + p(t)z(t — h) <O, t# 7, (N1,5)
Ax(t) < Ip(z(re), (. — h)), kEN

has no eventually positive solutions;

(b) inequality
z'(t) + q(t)z(t) +p(E)z(t — h) >0, t # 74 (N1>)

Az(my) > I(z(7k), z(t — h)), k€N

has no eventually negative solutions.

The proof of Corollary 2 is similar to that of Theorem 2 and therefore it is omitted.

3. Examples

In order to illustrate the obtained results, we offer the following two examples .
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Example 1 Consider the impulsive delay differential equation

5
:c’(t)Jer(t—l):D, t#‘Tk;, ke N,

1
Az(rg) = EI(TR:) + (1 — 1), k€ N,
where h =1 and Tp41 — 7 = 1. In this case we have M = max i[t — h,t) = 1 and especially

te[h,+0c0]
for the assumptions (Cp) and (Cz) it is fulfilled

(AEB)H 14,

[

¢

o 5

htrgggf / p(s)ds = 1 >
t—h

when

|%DJ(T}C) +z(r, —1)| < Llz(7)|, ke N for L <2.

So, the assumptions of Theorem 1 are satisfied. Therefore, by Theorem 1, all solutions of the

above eguation are oscillatory. For example, the function
__ —Aut gi[o,t) . s g : =Xt _
z(t) =e ™A with the initial function @(t) =e ,t € [0 —1,70),

where A\, = —1.9834 and A = —0.087 is an oscillatory solution of this equation.

Example 2 Consider the impulsive retarded differential equation

rc’(t)+%a:(t—1):0, t# T, KEN,

2 1
Az(m) = —i-(jm(ﬂc) 4 Tda:(ng —1), ke N,

with h =1 and Tpy1 — T = 1. In this case we have M = 1Enax 1i[t —h,t) =1 and it is easy
teh,+oo
to check that the assumption (Cs) is not satisfied, i.e.

¢
lminf [ p(s)ds = . < é(l +L)M ~ 0.405

t—o0 4
t—h
when

1
| - 12—0513('1%) + Ew(m — 1| <Llz(n)|, ke N for L <0.1.

Hence, the above equation is non-oscillatory. That means that among its solutions af least one is

non-oscillatory. In fact, the function
z{t) = et AL wyith the initial function o(t) = g e [0 — 1,70],70 >0

where A, = 0.385 and A = 0.954, is a non-oscillatory solution of this equation. Remark that
the above equation admits also oscillatory solutions. Such a solution is the function z(t) =
e MtAT0) where A, = —2.04 and A = —0.016.
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OSCILLATIONS OF FIRST ORDER NEUTRAL IMPULSIVE
DELAY DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

by

(2) (2)

1
M.K. GRAMMATIKOPOULOS' ), M.B. Divrtrova ™ AND V.I. DONEV

ABSTRACT. This paper is dealing with the oscillatory properties of first order
delay neutral impulsive differential equations and corresponding to them inequal-
ities with constant coefficients. The established sufficient conditions ensure the
oscillation of every solution of this type of equations.

Key words and phrases: oscillation of solutions, neutral impulsive delay differential equations and

inequalities, constant coefficients.

AMS (MOS) Subject Classifications: 34K11, 34K40, 34A37.

1. Introduction

Impulsive differential equations with deviating arguments (IDEDA) are adequate mathematical
models for the simulation of processes that depend on their history and are subject to short-time
disturbances. Such processes occur in the theory of optimal control, theoretical physics, pop-
ulation dynamics, biotechnology, industrial robotics, etc. In contrast to the theory of ordinary
impulsive differential equations (see, [1] - [3] and [20] ) and differential equations with deviating
arguments (see, [11], [13], [14]and [18]), the theory of IDEDA admits some theoretical and practi-
cal difficulties. We note here that [12] is the first work where IDEDA were considered. For more
results, concerning IDEDA, we choose to refer to [4]-[6],[8],[23] and [24]. Much less we know about
the neutral impulsive differential equations, i.e. equations in which the highest-order derivative
of the unknown function appears in the equation with the argument t (the present state of the
system), as well as with one or more retarded and/or advanced arguments (the past and/or the
future state of the system). Note that equations of this type appear in networks, containing
lossless transmission lines. Such networks arise , for example, in high speed computers, where

lossless transmission lines are used to interconnect switching circuits (see, [7] and [21]).

As it is known (see [11]), the appearance of the neutral term in a differential equation can

cause or destroy the oscillation of its solutions. Moreover, the study of neutral differential equa-
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tions in general , presents complications which are unfamiliar for non-neutral differential equa-
tions. As far as for a discussion on some more applications and some drastic differences in behavior

of the solution of neutral differential equations see, for example, [15],[16] and [22].

2. Preliminaries

In this article we consider the first order delay neutral impulsive differential equation with constant

coefficients of the form
d
W) —cyt=R) +qy(t—0) =0, t £ 7% (E1)

Aly(re) = cy(mi — h)] + pry(tk —0) =0, k€ N

as well as the corresponding to it inequalities
d
~[y(®) —cy(t— B +qy(t —0) <O, t £ 7 (N1.)

Aly(te) — ey(mi — )] + pry(Te —0) <0, kEN

and
Z1(0) — eyt~ W]+ ay(t—) 20, t £ 7y (M)

Aly(me) — ey(rs — )] + pry(me —0) 20, ke N
where c € (0,1), g, pi, € [0,+00),k € N and h, 0 € (0, +00).

Moreover, we consider a special case of the equation (E;) and the corresponding to it in-

equalities which are of the form
v(t)+qy(t—o)=0, t# 7 (B)
Ay(me) + pey(te —0) =0, ke N
y'(t) +qy(t—o) <0, t £ 74 (No.<)
Ay(Ti) + pry(1s —0) <0, ke N
and
y'(t) +ay(t— o) 20, t # 7 (Na.>)
Ay(me) + pry(me — o) >0, k€ N
respectively.

Here the deviations h and/or ¢ are positive constants and 7, € (0, +00),k € N are fixed
moments of impulsive effect (the jump points), which we characterize as down-jumps when Az (1)

<0, k€ N and as up-jumps when Az(r;) >0, k€ N.
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Denote by PC(R, R) the set of all piecewise continuous on the intervals (7x, Tk41], &K € N
functions u: R — R which at the jump points 7,, & € N are continuous from the left, i.e.
u(ty — 0) = lim¢—r, —o u(t) = u(7%), and may have discontinuities of first kind at the jump points
L, k€ N.

Suppose that the fixed moments of impulsive effect (the jump points) 75, £ € N have the

properties
=< << . < < ,..,klim Tk = oo, max {741 — Tk} < +o0, K EN
—+-00
Moreover, the following notions will be used throughout this paper.

A continuous real valued function w defined on an interval of the form [a, +00) eventually has

some property if there is a number b > a such that u has this property on the interval [b, +c0).

Let p = max{o, h}. We will say that a function y(¢) is a solution of Eq.(F1), if there exists
a number Ty € R such that y € PC([Ty — p, +o0], R), the function z(t) = y(t) — cy(t — h) is
continuously differentiable for ¢ > Tp, t # 7, k € N and y(t) satisfies Eq.(E1) for all t > Tg.

Furthermore, our results here pertain only to the nontrivial continuable solutions y(t) of the
equation (E1), i.e. y(t) is defined on an interval of the form [Ty, +o0) for some T, > Tp and

sup{|y(t)|: t > T} > 0foreach T > T,,.

Such a solution of Eq.(E4) is called regular. A regular solution y(t) of Eg¢.(E1), is said to be
nonoscillatory, if there exists a number ¢y > 0 such that y(t) is of constant sign for every t > tp.
Otherwise, it is called oscillatory. Also, note that a nonoscillatory solution is called eventually
positive (eventually negative), if the constant sign that determines its nonoscillation is positive
(negative). Equation (E;) is called oscillatory, if all its solutions are oscillatory. Otherwise, it is

called nonoscillatory.

In what follows we will consider Eq.(E), only in the cases, where it is a neutral (h # 0, ¢ #
0) and an impulsive (p; # 0 or p, = 0 with 7441 — 7 = h, k € N) differential equation
with two different deviations (¢ # 0, h # 0, ¢ # h) or with a single deviation (¢ = h # 0). So,
in what follows, without further mention, we will assume that

c€ (0,1), g,pg € [0,+00),k € N and h,o € (0, +0cc)

Finally, in this article, when we write a functional expression, we will mean that it holds for all
sufficiently large values of the argument.

Our aim is to establish sufficient conditions under which the equation (E,) is oscillatory.

To this end, we need the following two lemmas.

The first lemma (see, [9],[10] and[13]) describes the asymptotic behavior of the functions
z(t) = y(t) — cy(t — h) and y(t), where y(t) is an eventually positive solution of Eq.(E1).
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Lemma 1 Let y(t) be an eventually positive solution of Eq.(E;). Then:
(a) 2(t) > 0 for all large t with imy_. o0 2(t) = 0 and lim,, 4o [Az(7)] = 0;

(b) Hmt—>+oo y(t) = O and ]-im'rk—>+oo IAy(Tk)l =i},

Lemma 1, applied to the differentiable function z(t) = y(t) — cy(t — k) and to twice differen-
tiable function w(t) = z(¢) — c2(t — h), where y(t) is an eventually positive solution of Eq.(E;),

leads to the following proposition which is useful for our purposes.

Lemma 2 Let y(t) be an eventually positive solution of Eq.(E1). Then the functions #[L) =
y(t) — cy(t — h) and w(t) = 2(t) — cz(t — h) are also solutions of Eq.(E,) with the properties:

(a) z(t) > 0, 2/(t) < 0 eventually and

tmlali-noo Bt = D,Tkhﬁlw |Bztre)] =0;

(b) w(t) > 0, w'(t) <0 and w"(t) > 0 eventually and

t—ligloo w(t) = O,Tk]i)nim |Aw(T)| = 0.

Proof. As the negative of a solution of (E)) is also a solution of the same equation, it suffices
to prove the lemma for an eventually positive solution y(t) of (E;). Thus, assume, for the sake
of contradiction, that y(t) is an eventually positive solution of (E;). Then, since the equation
(E1) is an autonomous one, it follows that y(t — k) is also a solution of (E1). Therefore, 2(t) as a
linear combination of solutions of (E) is itself a solution of (E,). By similar arguments we easily
conclude that w(?) is also a solution of (£;). Now, using Lemma 1, it is easy to see that for all
large ¢

2(t) >0, 2/(t) <0

and that

tl}_’r{}oo E(L) = O,Tkl_l)n;m |AZ{w) | =0

By the same manner we conclude that for all large ¢
w(t) >0, w'(t) <0and wt)” = [2(t) —cz(t — h)] = —q2/(t—0) >0, t £ 7,

and that
lim w(t) =0, lim |Aw(r)|=0.

t—+4o00 Tp—+00

This completes the proof of the lemma.
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3. Oscillation of all solutions of (E»)

The results of this section will be used in the study of the oscillatory properties of (£7) and the

corresponding to it inequalities (N7 <) and (N7>) respectively.

Consider the first order ordinary impulsive delay differential equation (E3) and the corre-

sponding to it inequalities (N3 <) and (N2 >), which are special cases of the equation (E1).

Note that, as it is well-known (see, for example, [20] and [18]), a necessary and sufficient con-
dition for the oscillation of all solutions of the delay differential equation (Es), without impulsive
effects, is that go > % On the other hand, if the condition go < % holds, then, according to
a result in [17] (see also [18]), the delay differential equation (E3), without impulsive effects, is
non-oscillatory. Our results below, demonstrate the influence of impulsive effects on the behavior
of solutions of (E3). Indeed, Corollary 1 below shows the fact that the delay differential equation

(E5), subject to impulsive effects, is oscillatory even in the case, where go < %

Theorem 1 Assume that

lim inf(qo+ Z pr) = 1.

t 00
T t—o<7, <t

Then:
(a) the equation (E») Is oscillatory;
(b) the inequality (N2 <) has no eventually positive solutions;

(c) the inequality (N3 >), has no eventually negative solutions.

Proof. Since the proofs of (a),(b) and (c) can be carried out by similar arguments, it suffices
to prove only the case (a). To this end, as in the proof of Lemma 2, we assume that y(t) is an
eventually positive solution of (E3). Then there exists a tp > 0 such that y(t) > 0 for every t > tg.
Also, there is a t1 > to+o such that y(t—o) > 0, ¥/(¢) < 0 and Ay(7x) = —pry(T—0) <0, k€ N
for every t > t1. That means that y is decreasing function with down-jumps (Ay(7x) < 0), k € N.

Integrating (E2) from t — o to t, we find

WO -yit-o)- X Ayl + [

t
qy(s — o)ds = 0.
t—o <7<t =

Remark that, because y(t) is a positive decreasing function of ¢ , from last equality we derive

—ylt—o)+ > mylmk— o) +goy(t—o) <0. (1)
t—o<7 <t

as well as

y(e—0) >y(t—0o) >0, when, —0o <t—o.
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Hence, (1) yields
y(t—o)(—1+go + Z pp) <0

t—o<TR<t
and finally we conclude that

qo + Z D < 1.
t—o<7 <t

But the last inequality contradicts our assumptions and the conclusion of the theorem is evident.

As a consequence of the above theorem, we have the following important

Corollary 1 Let 0 < go < % and assume that liminf 55 pp > 1.
t=too o<, <t

Then the conclusion of Theorem 1 holds.

We conclude this section with the following

4. Oscillation of all solutions of Eq. (£}).

Having in mind the results of the previous section, we establish our main result which ensure the

oscillation of all solutions of the equation (E1).

Theorem 2 Assume that o > h and that

ltiminf [g(c — h) + Z pk) = 1—c.
i t—(o—h) <<t

Then:
(a) the equation (1) is oscillatory;
(b) the inequality (2) has now eventually positive solutions;

(c) the inequality (3) has no eventually negative solutions.

Proof. As in the proof of Theorem 1, we prove only the case (a). To do that, as in the
proof of Lemma 2, we assume, for the sake of contradiction, that Eq. (E1) has an eventually
positive solution y(¢). Then there exists a tp > 0 such that y(t) > 0 for every t > ty. Also, there
is a i3 > to+ o such that y(t — o) > 0, y'(t) < 0 and Aly(7) — cy(ri — k)] = —pey(7e — 0) <
0, £k € N for every t > t;. Now, by Lemma 2, it follows that for every t > ¢; the functions
z(t) = y(t) — ey(t — h) > 0 and w(t) = z(t) — cz(t — k) > 0 are solutions to the equation (E1).
That is, w(t) satisfies the equation

%[w(t) —cw(t—h)]+quw(t—0o)=0, t#m, (2)
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Alw(tg) — cw(my — h)] +ppw(tp, —0) =0, kEN

Note that, by Lemma 2, w(f) is an eventually positive strongly decreasing, while w'(t) is an

eventually negative strongly increasing function. Therefore, it is easy to see that

w(t—h)—cw'(t—h)+qu(t—o+h) < W(t)—cw'(t—h)+qu(t—o)
gg[w(t) —cw(t—h)]+quw(t—0o)=0 (3)

Moreover, since z(t) is a decreasing function, we see that z(7, — o) < 2(7; — ¢ — h) and so,

using the definitions of the functions z(t) and w(t), it is easy to conclude that

Aw(rg) = —ppz(T, —0) > —prz(Tk —0 — h) = Aw(rp, — h), k€N

So, in view of the above observation, from (2) it follows that for each k € N

Aw(ty — h) — cAw(t, — h) + prw(te — o+ h) < Aw(rg) — cAw(ry — h) + prw (i — o)
= Alw(rg) — cw(ry — h)] +prw(ty — o) =0 (4)

Now, by (3) and (4) , it follows that w(t) is an eventually positive function for which
(1—c)uw'(t—h)+quw(t—o+h) <0, t#7
(1—c)Aw(t, —h) + prw(t, — o+ h) <0, ke N
Hence, we conclude that w(t) is an eventually positive solution to the inequality

w’(t)—!—%w(t—a—f—h) <0, t 7, (5)

Aw(ry) + IPT‘“Cw(Tk —6+h) <0, keN
which is a contradiction. Indeed, the inequality (5) is of the form (Ns <). But, by Theorem 1(b),
the inequality (5) can not have eventually positive solutions.

The proof of the theorem is complete.

As consequences of the above theorem, we formulate the following propositions, the first of

which is an analogous to Corollary 1.

Corollary 2 Assume that 0 < g(oc — k) < 1 and that

i 2 mEl-G
t—(o—h)<T <t

Then the conclusion of Theorem 2 holds.
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Corollary 3 Assume that q(c — h) > 1 and that
e 1
lim inf E pr=>1—c——.
e
t“(oﬁh)é’i‘kst

Then the conclusion of Theorem 2 holds.
Next will be the result in the case of single deviation of Eq.(E).

Theorem 3 Assume that ¢ = h and that

lggl_&ilof [gh + Z Pkl = 1+ec.
t<m<t+h

Then Eq. (E4) is oscillatory.

Proof. Let, for the sake of contradiction, y(¢) be an eventually positive solution solution
of the equation (E;). Then, in view of Lemma 2, the function z(t) = y(t) — ey(t — h) and
w(t) = 2(t) — cz(t — h) are eventually positive solutions to the equation (Ej). That is, w(t)
satisfies

fw(t) — cw(t — )] +qu(t—h) =0 ¢ £ 7 (6)

/_\{w(ﬁc) = C’LU(T;; — h}] +pkw(’rk —h)=0, ke N.

Integrating Eq. (6) from ¢ to t + h, we obtain

t+h
w(t + h) — w(t) — cfw(t) — w(t— k)] + Z prw(TE — h) + q/ w(s — h)ds = 0,
t<rp<t+h &

and equivalently

w(t+h) —w(t) - cw(t) —wt—h)]+ > prw(re—h)+ghwt+h—h)<0. (7)
t<Tp<t+h
Since w(t) is a decreasing function of t, we see that w(7, — h) > w(t) for t < 7, < ¢t + h and so,

from (7) we derive

w(t)(~1—c+ Y pr+gh) <0,
t<r. <t-+h

which implies that

qgh + Z e <l+c
t<T <t+h

The obtained contradiction proves the theorem.

As a consequence of the above theorem, we formulate the following proposition, that is an

analogous to Corollary 1.
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Corollary 4 Assume that 0 = h and 0 < gh < % and that

lgginf Z b L4+6
t<rm.<t+h

Then:
(i) the equation (1) is oscillatory;
(ii) the inequality (2) has no eventually positive solutions;

(iii) the inequality (3) has no eventually negative solutions.
We conclude with an example, which illustrates Theorem 3 and its Corollary 4.

Example 1 The neutral impulsive differential equation with 7o — T =1, k€ N
1
[y(®) — 5y -1 =0, t#m

Aly(ry) — %y(m 1] gy(m -1)=0,k€EN,

for every t > 19 = 0 satisfies the assumptions of Corollary 4 of Theorem 3, i.e.

(3] (9%}

liminf[gh+ S pi]=1+c whereo=h=1,9g=0,c=%, pr=p=
t—too t< <t+h

Hence, it has only oscillatory solutions. It is obvious that these solutions will be in the form
of piece-vice constant functions y(t) = Ay, for t € (1g—1,7k), £ € N, t > 179 = 0 with initial
function

(,O(t) =Ag, te [TO — 1,’1‘0,}, Ay e R

where the "pulsatile” coefficients A}, are determined by the difference scheme
1 3
Aly(re) = 5y(m = D]+ 5y(me —1) =0,k € N,

e, App1 =y(Te41) = (14 c)Ax — (p+ ¢) Ak-1,

where

A1 =y(m—1), Ap=y(m), A-1= Ao
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